Chronic Central Leptin Decreases Food Intake and Improves Glucose Tolerance in Diet-Induced Obese Mice Independent of Hypothalamic Malonyl CoA Levels and Skeletal Muscle Insulin Sensitivity

Author:

Keung Wendy1,Palaniyappan Arivazhagan1,Lopaschuk Gary D.1

Affiliation:

1. Cardiovascular Research Centre, Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta, Canada T6G 2S2

Abstract

Although acute leptin administration in the hypothalamus decreases food intake and increases peripheral energy metabolism, the peripheral actions of central chronic leptin administration are less understood. In this study, we investigated what effects chronic (7 d) intracerebroventricular (ICV) administration of leptin has on energy metabolism and insulin sensitivity in diet-induced obese mice. C57/BL mice were fed a low-fat diet (LFD; 10% total calories) or high-fat diet (HFD; 60% total calories) for 8 wk after which leptin was administered ICV for 7 consecutive days. Mice fed a HFD showed signs of insulin resistance, as evidenced by an impaired glucose tolerance test. Chronic leptin treatment resulted in a decrease in food intake and body weight and normalization of glucose clearance but no improvement in insulin sensitivity. Chronic ICV leptin increased hypothalamic signal transducer and activator of transcription-3 and AMP-activated protein kinase phosphorylation but did not change hypothalamic malonyl CoA levels in HFD fed and LFD-fed mice. In the gastrocnemius muscles, the levels of malonyl CoA in both leptin-treated groups were lower than their respective control groups, suggesting an increase in fatty acid oxidation. However, only in the muscles of ICV leptin-treated LFD mice was there a decrease in lipid metabolites including diacylglycerol, triacylglycerol, and ceramide. Our results suggest that chronic ICV leptin decreases food consumption and body weight via a mechanism different from acute ICV leptin administration. Although chronic ICV leptin treatment in HFD mice improves glucose tolerance, this occurs independent of changes in insulin sensitivity in the muscles of HFD mice.

Publisher

The Endocrine Society

Subject

Endocrinology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3