Heparin-Binding EGF-Like Growth Factor (HB-EGF) Mediates 5-HT-Induced Insulin Resistance Through Activation of EGF Receptor-ERK1/2-mTOR Pathway

Author:

Li Qinkai1,Hosaka Toshio2,Shikama Yosuke1,Bando Yukiko1,Kosugi Chisato1,Kataoka Nanako1,Nakaya Yutaka3,Funaki Makoto1

Affiliation:

1. The Clinical Research Center for Diabetes (Q.L., Y.S., Y.B., C.K., N.K., M.F.), Tokushima University Hospital, Tokushima 770-8503, Japan

2. Department of Public Health and Applied Nutrition (T.H.), Institute of Health Biosciences, University of Tokushima Graduate School, Tokushima 770-8503, Japan

3. Department of Nutrition and Metabolism (Y.N.), Institute of Health Biosciences, University of Tokushima Graduate School, Tokushima 770-8503, Japan

Abstract

Although an inverse correlation between insulin sensitivity and the level of Gq/11-coupled receptor agonists, such as endothelin-1, thrombin, and 5-hydroxytryptamine (5-HT), has been reported, its precise mechanism remains unclear. In this report, we provide evidence that 5-HT induced production of heparin-binding epidermal growth factor-like growth factor (HB-EGF) and caused insulin resistance in 3T3-L1 adipocytes, primary adipocytes, and C2C12 myotubes. In 3T3-L1 adipocytes, 5-HT stimulated HB-EGF production by promoting metalloproteinase-dependent shedding of transmembrane protein pro-HB-EGF. HB-EGF then bound and tyrosine-phosphorylated EGF receptors, which activated the mammalian target of rapamycin pathway through ERK1/2 phosphorylation. Mammalian target of rapamycin activation caused serine phosphorylation of insulin receptor substrate-1, which attenuated insulin-stimulated tyrosine phosphorylation of insulin receptor substrate-1 and glucose uptake. Pharmacological inhibition of either Gq/11-coupled receptors or metalloproteinases, as well as either inhibition or knockdown of HB-EGF or Gαq/11, restored insulin signal transduction impaired by 5-HT. Inhibition of metalloproteinase activity also abolished HB-EGF production and subsequent EGF receptor activation by other Gq/11-coupled receptor agonists known to cause insulin resistance, such as endothelin-1 and thrombin. These results suggest that transactivation of the EGF receptor through HB-EGF processing plays a pivotal role in 5-HT-induced insulin resistance.

Publisher

The Endocrine Society

Subject

Endocrinology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3