Evidence that the Arcuate Nucleus Is an Important Site of Progesterone Negative Feedback in the Ewe

Author:

Goodman Robert L.1,Holaskova Ida1,Nestor Casey C.1,Connors John M.1,Billings Heather J.2,Valent Miro1,Lehman Michael N.3,Hileman Stanley M.1

Affiliation:

1. Departments of Physiology and Pharmacology (R.L.G., I.H., C.C.N., J.M.C., M.V., S.M.H.), Robert C. Byrd Health Sciences Center, Morgantown, West Virginia 26506

2. Neurobiology and Anatomy (H.J.B.), Robert C. Byrd Health Sciences Center, Morgantown, West Virginia 26506

3. Department of Anatomy and Cell Biology (M.N.L.), Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, Canada N6A 5C1

Abstract

There is now considerable evidence that dynorphin neurons mediate the negative feedback actions of progesterone to inhibit GnRH and LH pulse frequency, but the specific neurons have yet to be identified. In ewes, dynorphin neurons in the arcuate nucleus (ARC) and preoptic area (POA) are likely candidates based on colocalization with progesterone receptors. These studies tested the hypothesis that progesterone negative feedback occurs in either the ARC or POA by determining whether microimplants of progesterone into either site would inhibit LH pulse frequency (study 1) and whether microimplants of the progesterone receptor antagonist, RU486, would disrupt the inhibitory effects of peripheral progesterone (study 2). Both studies were done in ovariectomized (OVX) and estradiol-treated OVX ewes. In study 1, no inhibitory effects of progesterone were observed during treatment in either area. In study 2, microimplants of RU486 into the ARC disrupted the negative-feedback actions of peripheral progesterone treatments on LH pulse frequency in both OVX and OVX+estradiol ewes. In contrast, microimplants of RU486 into the POA had no effect on the ability of systemic progesterone to inhibit LH pulse frequency. We thus conclude that the ARC is one important site of progesterone-negative feedback in the ewe. These data, which are the first evidence on the neural sites in which progesterone inhibits GnRH pulse frequency in any species, are consistent with the hypothesis that ARC dynorphin neurons mediate this action of progesterone.

Publisher

The Endocrine Society

Subject

Endocrinology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3