Identification of Novel TSH Interaction Sites by Systematic Binding Analysis of the TSHR Hinge Region

Author:

Mueller Sandra1,Szkudlinski Mariusz W.2,Schaarschmidt Jörg1,Günther Robert3,Paschke Ralf1,Jaeschke Holger1

Affiliation:

1. Division of Endocrinology and Nephrology (S.M., J.S., R.P., H.J.), University of Leipzig, D-04103 Leipzig, Germany;

2. Trophogen, Inc. (M.W.S.), Rockville, Maryland 20850

3. the Institute of Biochemistry (R.G.), University of Leipzig, D-04103 Leipzig, Germany;

Abstract

In which ways the binding of the thyroid stimulating hormone to the extracellular domain of its receptor leads to activation of the thyroid-stimulating hormone receptor (TSHR) is currently only incompletely understood. It is known that TSH binding to the TSHR depends on the interaction with the leucine-rich repeat and sulfation at Y385 of the hinge region. Recently it was also shown that electrostatic interactions between positive charges of bovine (b) TSH and the residues E297, E303, and D382 of the hinge region contribute to hormone-TSHR binding. After the identification of these first TSH binding sites in the hinge region, it was apparent that multiple positions in this region remained to be characterized for their roles in hormone binding. The goal of this study was therefore to clarify whether further contact points of TSH exist in the structurally undefined hinge region. Therefore, we systematically analyzed 41 uncharacterized residues of the TSHR hinge region as single mutants regarding differences between cell surface expression and bTSH binding. Indeed, we identified further amino acids of the hinge region with influence on bTSH binding. Some of these contribute to a new binding domain from human TSHR position F381 to D386. These hinge mutants with influence on bTSH binding were also analyzed for binding of the superagonistic human TSH analog TR1401 demonstrating that these positions also have an impact on TR1401 binding. Moreover, side chain variations revealed that different amino acid properties like the negative charge, aromatic as well as hydrophilic characteristics, contribute to maintain the hormone-TSHR hinge interaction.

Publisher

The Endocrine Society

Subject

Endocrinology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3