The Conundrum of Estrogen Receptor Oscillatory Activity in the Search for an Appropriate Hormone Replacement Therapy

Author:

Della Torre Sara1,Biserni Andrea2,Rando Gianpaolo1,Monteleone Giuseppina1,Ciana Paolo1,Komm Barry3,Maggi Adriana1

Affiliation:

1. Center of Excellence on Neurodegenerative Diseases and Department of Pharmacological Sciences (S.D.T., G.R., G.M., P.C., A.M.), University of Milan, 20133 Milan, Italy;

2. Transgenic Operative Products s.r.l. (A.B.), 26900 Lodi, Italy;

3. Pfizer Inc. (B.K.), Collegeville, Pennsylvania 19426

Abstract

By the use of in vivo imaging, we investigated the dynamics of estrogen receptor (ER) activity in intact, ovariectomized, and hormone-replaced estrogen response element-luciferase reporter mice. The study revealed the existence of a long-paced, noncircadian oscillation of ER transcriptional activity. Among the ER-expressing organs, this oscillation was asynchronous and its amplitude and period were tissue dependent. Ovariectomy affected the amplitude but did not suppress ER oscillations, suggesting the presence of tissue endogenous oscillators. Long-term administration of raloxifene, bazedoxifene, combined estrogens alone or with basedoxifene to ovariectomized estrogen response element-luciferase mice showed that each treatment induced a distinct spatiotemporal profile of ER activity, demonstrating that the phasing of ER activity among tissues may be regulated by the chemical nature and the concentration of circulating estrogen. This points to the possibility of a hierarchical organization of the tissue-specific pacemakers. Conceivably, the rhythm of ER transcriptional activity translates locally into the activation of specific gene networks enabling ER to significantly change its physiological activity according to circulating estrogens. In reproductive and nonreproductive organs this hierarchical regulation may provide ER with the signaling plasticity necessary to drive the complex metabolic changes occurring at each female reproductive status. We propose that the tissue-specific oscillatory activity here described is an important component of ER signaling necessary for the full hormone action including the beneficial effects reported for nonreproductive organs. Thus, this mechanism needs to be taken in due consideration to develop novel, more efficacious, and safer hormone replacement therapies.

Publisher

The Endocrine Society

Subject

Endocrinology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3