Repressor of Estrogen Receptor Activity (REA) Is Essential for Mammary Gland Morphogenesis and Functional Activities: Studies in Conditional Knockout Mice

Author:

Park Sunghee1,Zhao Yuechao1,Yoon Sangyeon1,Xu Jianming2,Liao Lan2,Lydon John2,DeMayo Franco2,O'Malley Bert W.2,Katzenellenbogen Benita S.1

Affiliation:

1. Department of Molecular and Integrative Physiology (S.P., Y.Z., S.Y., B.S.K.), University of Illinois at Urbana-Champaign, Urbana, Illinois 61801-3704

2. Department of Molecular and Cellular Biology (J.X., L.L., J.L., F.D., B.W.O.), Baylor College of Medicine, Houston, Texas 77030-3498

Abstract

Estrogen receptor (ER) is a key regulator of mammary gland development and is also implicated in breast tumorigenesis. Because ER-mediated activities depend critically on coregulator partner proteins, we have investigated the consequences of reduction or loss of function of the coregulator repressor of ER activity (REA) by conditionally deleting one allele or both alleles of the REA gene at different stages of mammary gland development. Notably, we find that heterozygosity and nullizygosity for REA result in very different mammary phenotypes and that REA has essential roles in the distinct morphogenesis and functions of the mammary gland at different stages of development, pregnancy, and lactation. During puberty, mice homozygous null for REA in the mammary gland (REAf/f PRcre/+) showed severely impaired mammary ductal elongation and morphogenesis, whereas mice heterozygous for REA (REAf/+ PRcre/+) displayed accelerated mammary ductal elongation, increased numbers of terminal end buds, and up-regulation of amphiregulin, the major paracrine mediator of estrogen-induced ductal morphogenesis. During pregnancy and lactation, mice with homozygous REA gene deletion in mammary epithelium (REAf/f whey acidic protein-Cre) showed a loss of lobuloalveolar structures and increased apoptosis of mammary alveolar epithelium, leading to impaired milk production and significant reduction in growth of their offspring, whereas body weights of the offspring nursed by females heterozygous for REA were slightly greater than those of control mice. Our findings reveal that REA is essential for mammary gland development and has a gene dosage-dependent role in the regulation of stage-specific physiological functions of the mammary gland.

Publisher

The Endocrine Society

Subject

Endocrinology

Reference60 articles.

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3