Affiliation:
1. Department of Biochemistry Case Western Reserve University Cleveland, Ohio 44106
Abstract
Abstract
The high-mobility group (HMG) box defines a DNA-bending motif of broad interest in relation to human development and disease. Major and minor wings of an L-shaped structure provide a template for DNA bending. As in the TATA-binding protein and a diverse family of factors, insertion of one or more side chains between base pairs induces a DNA kink. The HMG box binds in the DNA minor groove and may be specific for DNA sequence or distorted DNA architecture. Whereas the angular structures of non-sequence-specific domains are well ordered, free SRY and related autosomal SOX domains are in part disordered. Observations suggesting that the minor wing lacks a fixed tertiary structure motivate the hypothesis that DNA bending and stabilization of protein structure define a coupled process. We further propose that mutual induced fit in SOX-DNA recognition underlies the sequence dependence of DNA bending and enables the induction of promoter-specific architectures.
Subject
Endocrinology,Molecular Biology,General Medicine
Cited by
55 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献