Mapping of the Fibroblast Growth Factors in Human White Adipose Tissue

Author:

Mejhert Niklas1,Galitzky Jean2,Pettersson Amanda T.1,Bambace Clara1,Blomqvist Lennart3,Bouloumié Anne2,Frayn Keith N.4,Dahlman Ingrid1,Arner Peter1,Rydén Mikael1

Affiliation:

1. Department of Medicine (N.M., A.T.P., C.B., I.D., P.A., M.R.), Huddinge, Lipid Laboratory, Karolinska Institutet, SE-141 86 Stockholm, Sweden

2. Institut National de la Santé et de la Recherche Médicale, Unité 858 (J.G., A.B.), Toulouse, France

3. Division of Surgery (L.B.), Department of Clinical Science, Danderyds Hospital, Karolinska Institutet, SE-182 88 Stockholm, Sweden

4. Nuffield Department of Clinical Medicine (K.N.F.), Oxford Centre for Diabetes, Endocrinology, and Metabolism, University of Oxford, Oxford OX3 7LJ, United Kingdom

Abstract

Abstract Context: Fibroblast growth factors (FGFs) regulate the development of white adipose tissue (WAT). However, the secretion and cellular origin of individual FGFs in WAT as well as the influence of obesity are unknown. Objective: Our objective was to map FGFs in human sc WAT, the cellular source, and association with obesity. Design: Secretion, mRNA, and circulatory levels of FGFs in human abdominal sc WAT from nonobese and obese donors were examined by microarray, real-time quantitative PCR, and ELISA. The activity of FGFs in cultured human adipocytes was determined by phosphorylation assays. Results: Expression of five FGFs (FGF1, FGF2, FGF7, FGF9, and FGF18) and FGF homologous factor (FHF2) was identified in WAT. Only FGF1 was released in a time-dependent manner from sc WAT, and fat cells were the major source of FGF1 secretion. FGF1 expression increased and FGF2 decreased during adipocyte differentiation. Furthermore, FGF1 was not secreted into the circulation. Although FGF1 levels were 2-fold increased in obesity, they were unaltered by weight reduction. Only FGF1 and FGF2 induced a marked concentration-dependent phosphorylation of p44/42 in cultured human adipocytes. Conclusions: Of the investigated FGFs, only FGF1 is secreted from sc WAT and predominantly so from the adipocyte fraction. The activity in adipocyte cultures and lack of secretion into the circulation suggest that FGF1 acts as an auto- or paracrine factor. FGF1 levels are increased in obesity but unaffected by weight reduction, suggesting a primary defect in obese individuals. In conclusion, FGF1 may play a superior role among the FGFs in sc WAT and obesity development.

Publisher

The Endocrine Society

Subject

Biochemistry, medical,Clinical Biochemistry,Endocrinology,Biochemistry,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3