SGK3 Is an Estrogen-Inducible Kinase Promoting Estrogen-Mediated Survival of Breast Cancer Cells

Author:

Wang Yuanzhong1,Zhou Dujin1,Phung Sheryl1,Masri Selma1,Smith David2,Chen Shiuan1

Affiliation:

1. Divisions of Tumor Cell Biology (Y.W., D.Z., S.P., S.M., S.C.), Beckman Research Institute of the City of Hope, Duarte, California 91010

2. Information Science (D.S.), Beckman Research Institute of the City of Hope, Duarte, California 91010

Abstract

Serum- and glucocorticoid-inducible kinase 3 (SGK3) is a protein kinase of the AGC family of protein kinase A, protein kinase G, and protein kinase C and functions downstream of phosphatidylinositol 3-kinase (PI3K). Recent study revealed that SGK3 plays a pivotal role in Akt/protein kinase B independent signaling downstream of oncogenic PI3KCA mutations in breast cancer. Here we report that SGK3 is an estrogen receptor (ER) transcriptional target and promotes estrogen-mediated cell survival of ER-positive breast cancer cells. Through a meta-analysis on 22 microarray studies of breast cancer in the Oncomine database, we found that the expression of SGK3 is significantly higher (5.7-fold, P < 0.001) in ER-positive tumors than in ER-negative tumors. In ER-positive breast cancer cells, SGK3 expression was found to be induced by 17β-estradiol (E2) in a dose- and time-dependent manner, and the induction of SGK3 mRNA by E2 is independent of newly synthesized proteins. We identified two ERα-binding regions at the sgk3 locus through chromatin immunoprecipitation with massively parallel DNA sequencing. Promoter analysis revealed that ERα stimulates the activity of sgk3 promoters by interaction with these two ERα-binding regions on E2 treatment. Loss-of-function analysis indicated that SGK3 is required for E2-mediated cell survival of MCF-7 breast carcinoma cells. Moreover, overexpression of SGK3 could partially protect MCF-7 cells against apoptosis caused by antiestrogen ICI 182,780. Together, our study defines the molecular mechanism of regulation of SGK3 by estrogen/ER and provides a new link between the PI3K pathway and ER signaling as well as a new estrogen-mediated cell survival mechanism mediated by SGK3 in breast cancer cells.

Publisher

The Endocrine Society

Subject

Endocrinology,Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3