WNT5A Regulates Chondrocyte Differentiation through Differential Use of the CaN/NFAT and IKK/NF-κB Pathways

Author:

Bradley Elizabeth W.1,Drissi M. Hicham1

Affiliation:

1. The Department of Orthopeadic Surgery, University of Connecticut Health Center, Farmington, Connecticut 06062

Abstract

AbstractAlthough genetic evidence demonstrated a requirement for Wnt5a during cartilage development, little is known about the mechanisms underlying Wnt5a-regulated chondrocyte growth and differentiation. We therefore investigated the signaling pathways by which Wnt5a influences chondrogenesis and differentiation to hypertrophy. Wnt5a treatment of chondroprogenitor cells increased chondrocyte hypertrophy and was associated with an increase in nuclear factor of activated T cells (NFAT) and a decrease in nuclear factor-κB (NF-κB) activation. In contrast, Wnt5a inhibited chondrocyte hypertrophy. This inhibition of hypertrophy occurred with the reciprocal signaling activation, in that a decrease in NFAT and an increase in NF-κB activation was observed. Furthermore, the increase in chondroprogenitor cell differentiation with Wnt5a treatment was blocked by calmodulin kinase or NFAT loss of function. In addition, the repression of chondrocyte hypertrophy observed was abrogated by NF-κB loss of function. Activation of the NFAT pathway downstream of Wnt5a also negatively regulated NF-κB activity, providing evidence of antagonism between these two pathways. Mechanistically, Wnt5a acts to increase chondrocyte differentiation at an early stage through calmodulin kinase /NFAT-dependent induction of Sox9. Conversely, Wnt5a represses chondrocyte hypertrophy via NF-κB-dependent inhibition of Runx2 expression. These data indicate that Wnt5a regulates chondrogenesis and chondrocyte hypertrophy in a stage-dependent manner through differential utilization of NFAT- and NF-κB-dependent signal transduction.

Publisher

The Endocrine Society

Subject

Endocrinology,Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3