Affiliation:
1. Thyroid Autoimmunity Unit, Cedars-Sinai Research Institute and University of California Los Angeles School of Medicine, Los Angeles, California 90048
Abstract
The glycoprotein hormone receptor hinge region is the least conserved component and the most variable in size; the TSH receptor (TSHR) being the longest (152 amino acids; residues 261–412). The TSHR is also unique among the glycoprotein hormone receptor in undergoing in vivo intramolecular cleavage into disulfide-linked A- and B-subunits with removal of an intervening ‘C-peptide’ region. Experimentally, hinge region amino acids 317–366 (50 residues) can be deleted without alteration in receptor function. However, in vivo, more than 50 amino acids are deleted during TSHR intramolecular cleavage; furthermore, the boundaries of this deleted region are ragged and poorly defined. Studies to determine the extent to which hinge region deletions can be tolerated without affecting receptor function (‘minimal hinge’) are lacking. Using as a template the functionally normal TSHR with residues 317–366 deleted, progressive downstream extension of deletions revealed residue 371 to be the limit compatible with normal TSH binding and coupling with cAMP signal transduction. Based on the foregoing downstream limit, upstream deletion from residue 307 (307–371 deletion) was also tolerated without functional alteration, as was deletion of residues 303–366. Addressing a related issue regarding the functional role of the TSHR hinge region, we observed that downstream hinge residues 377–384 contribute to coupling ligand binding with cAMP signal transduction. In summary, we report the first evaluation of TSHR function in relation to proteolytic posttranslational hinge region modifications. Deletion of TSHR hinge amino acids 303–366 (64 residues) or 307–371 (65 residues) are the maximum hinge region deletions compatible with normal TSHR function.
Subject
Endocrinology,Molecular Biology,General Medicine
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献