Targeting MYC as a Therapeutic Intervention for Anaplastic Thyroid Cancer

Author:

Enomoto Keisuke1,Zhu Xuguang1,Park Sunmi1,Zhao Li1,Zhu Yuelin J.2,Willingham Mark C.1,Qi Jun3,Copland John A.4,Meltzer Paul2,Cheng Sheue-yann1

Affiliation:

1. Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892

2. Laboratory of Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892

3. Dana Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02215

4. Department of Cancer Biology, Mayo Clinic, Jacksonville, Florida 32224

Abstract

Abstract Context: Recent studies showed that transcription of the MYC gene is driven by the interaction of bromodomain and extraterminal domain (BET) proteins with acetylated histones on chromatin. JQ1, a potent inhibitor that effectively disrupts the interaction of BET proteins with acetylated histones, preferentially suppresses transcription of the MYC gene. We recently reported that JQ1 decreased thyroid tumor growth and improved survival in a mouse model of anaplastic thyroid cancer (ATC) by targeting MYC transcription. The role of MYC in human ATC and whether JQ1 can effectively target MYC as a treatment modality have not been elucidated. Objective: To understand the underlying molecular mechanisms of JQ1, we evaluated its efficacy in human ATC cell lines and xenograft models. Design: We determined the effects of JQ1 on proliferation and invasion in cell lines and xenograft tumors. We identified key regulators critical for JQ1-affected proliferation and invasion of tumor cells. Results: JQ1 markedly inhibited proliferation of four ATC cell lines by suppression of MYC and elevation of p21and p27 to decrease phosphorylated Rb and delay cell cycle progression from the G0/G1 phase to the S phase. JQ1 blocked cell invasion by attenuating epithelial-mesenchymal transition signals. These cell-based studies were further confirmed in xenograft studies in which the size and rate of tumor growth were inhibited by JQ1 via inhibition of p21-cyclin/cyclin-dependent kinase-Rb-E2F signaling. Conclusions: These results suggest targeting of the MYC protein could be a potential treatment modality for human ATC for which effective treatment options are limited.

Publisher

The Endocrine Society

Subject

Biochemistry, medical,Clinical Biochemistry,Endocrinology,Biochemistry,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3