Endocrine Disrupting Chemicals, Phthalic Acid and Nonylphenol, Activate Pregnane X Receptor-Mediated Transcription

Author:

Masuyama Hisashi1,Hiramatsu Yuji1,Kunitomi Mamoru1,Kudo Takafumi1,MacDonald Paul N.2

Affiliation:

1. Department of Obstetrics and Gynecology (H.M., Y.H., M.K., T.K.) Okayama University Medical School Okayama, 700-8558, Japan

2. Department of Pharmacology (P.N.M.) Case Western Reserve University Cleveland, Ohio 44106

Abstract

Abstract Recently, Pregnane X receptor (PXR), a new member of the nuclear receptor superfamily, was shown to mediate the effects of several steroid hormones, such as progesterone, glucocorticoid, pregnenolone, and xenobiotics on cytochrome P450 3A genes (CYP3A) through the specific DNA sequence for CYP3A, suggesting that PXR may play a role in steroid hormone metabolism. In this paper, we demonstrated that phthalic acid and nonylphenol, endocrine-disrupting chemicals (EDCs), stimulated PXR-mediated transcription at concentrations comparable to those at which they activate estrogen receptor-mediated transcription using a transient reporter gene expression assay in COS-7 cells. However, bisphenol A, another EDC, had no effect on PXR-mediated transcription, although this chemical significantly enhanced ER-mediated transcription. In the yeast two-hybrid protein interaction assay, PXR interacted with two nuclear receptor coactivator proteins, steroid hormone receptor coactivator-1 and receptor interacting protein 140, in the presence of phthalic acid or nonylphenol. Thus, EDC-occupied PXR may regulate its specific gene expression through the receptor-coactivator interaction. In contrast, these EDCs had no effect on the interaction between PXR and suppressor for gal 1, a component of proteasome. Finally, the expression of CYP3A1 mRNA in the liver of rats exposed to phthalic acid or nonylphenol markedly increased compared with that in rats treated with estradiol, bisphenol A, or ethanol as assessed by competitive RT-PCR. These data suggest that EDCs may affect endocrine functions by altering steroid hormone metabolism through PXR.

Publisher

The Endocrine Society

Subject

Endocrinology,Molecular Biology,General Medicine

Cited by 92 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3