FOXO3 Is Inhibited by Oncogenic PI3K/Akt Signaling but Can Be Reactivated by the NSAID Sulindac Sulfide

Author:

Weidinger Carl1,Krause Kerstin1,Mueller Kathrin1,Klagge Antje1,Fuhrer Dagmar1,Führer-Sakel DagmarORCID

Affiliation:

1. Clinic of Endocrinology and Nephrology, Department of Internal Medicine, Neurology, and Dermatology, University of Leipzig, D-04103 Leipzig, Germany

Abstract

Abstract Background: Overactivation of the phosphatidylinositol 3-kinase (PI3K)/Akt pathway has emerged as a pivotal trigger of thyroid carcinogenesis. Recent findings from other tumor entities revealed that PI3K/Akt-driven carcinogenesis critically involves the inactivation of the tumor-suppressive transcription factor Forkhead box O (FOXO)-3. However, little is known about FOXO3 in the thyroid context. Aims: We sought to investigate the influence of the thyroid oncogenes BRAFV600E, H-RASV12, and p110α (H1074R) on the regulation of the PI3K downstream target FOXO3 in vitro. Furthermore, the impact of the expression of phosphatase and tensin homolog deleted from chromosome 10 (PTEN) on the transcriptional activity of FOXO3 was assessed in a panel of 44 human thyroid tumors. Finally, we tried to modulate FOXO3 activity pharmacologically with help of the nonsteroidal antiinflammatory drug sulindac sulfide (SS). Results: We found that the overexpression of p110α H1074R results in the inactivation of FOXO3 via its nuclear exclusion. In vivo, we observed a direct correlation between PTEN expression and the transcriptional activation of FOXO3. In vitro, we found that stimulation with SS reversed PI3K/Akt-driven inactivation of FOXO3, resulting in its nuclear relocation and a combined induction of the antiproliferative FOXO target genes Gadd45α and p27kip1 and the proapoptotic FOXO target gene Bim in benign (FRTL-5) and malignant human thyrocytes (FTC-133). In agreement with this, SS promoted the cell cycle arrest and apoptosis in thyroid cells, which could be amplified by the transfection of exogenous FOXO3. Conclusion: Our data suggest that deregulation of proapoptotic FOXO3 represents a central step in PI3K/Akt-mediated thyroid carcinogenesis. Thus, SS might represent an attractive pharmacological tool for targeting thyroid neoplasia with aberrant PI3K/Akt/FOXO3 signaling.

Publisher

The Endocrine Society

Subject

Biochemistry, medical,Clinical Biochemistry,Endocrinology,Biochemistry,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3