Postnatal Decrease in Circulating Insulin-Like Growth Factor-I and Low Brain Volumes in Very Preterm Infants

Author:

Hansen-Pupp Ingrid1,Hövel Holger1,Hellström Ann2,Hellström-Westas Lena3,Löfqvist Chatarina2,Larsson Elna-Marie4,Lazeyras Francois5,Fellman Vineta16,Hüppi Petra S.7,Ley David1

Affiliation:

1. Division of Pediatrics (I.H.-P., H.H., V.F., D.L.), Department of Clinical Sciences Lund, Lund University, 221 85 Lund, Sweden;

2. Department of Ophthalmology (A.H., C.L.), Institute of Neuroscience and Physiology, The Sahlgrenska Academy at Gothenburg University, 405 30 Göteborg, Sweden;

3. Departments of Women's and Children's Health (L.H.-W.), Uppsala University Hospital, 751 85 Uppsala, Sweden;

4. Departments of Radiology (E.-M.L.), Uppsala University Hospital, 751 85 Uppsala, Sweden;

5. Departments of Radiology-Center for Biomedical Imaging (F.L.) Geneva University Hospital, 1211 Geneva, Switzerland;

6. Department of Pediatrics (V.F.), Clinical Sciences, University of Helsinki, 00014 Helsinki, Finland

7. Departments of Pediatrics (P.S.H.), Geneva University Hospital, 1211 Geneva, Switzerland;

Abstract

Abstract Context: IGF-I and IGF binding protein-3 (IGFBP-3) are essential for growth and maturation of the developing brain. Objective: The aim of this study was to evaluate the association between postnatal serum concentrations of IGF-I and IGFBP-3 and brain volumes at term in very preterm infants. Design: Fifty-one infants with a mean (sd) gestational age (GA) of 26.4 (1.9) wk and birth weight (BW) of 888 (288) g were studied, with weekly blood sampling of IGF-I and IGFBP-3 from birth until 35 gestational weeks (GW) and daily calculation of protein and caloric intake. Magnetic resonance images obtained at 40 GW were segmented into total brain, cerebellar, cerebrospinal fluid, gray matter, and unmyelinated white matter volumes. Main Outcome Measures: We evaluated brain growth by measuring brain volumes using magnetic resonance imaging. Results: Mean IGF-I concentrations from birth to 35 GW correlated with total brain volume, unmyelinated white matter volume, gray matter volume, and cerebellar volume [r = 0.55 (P < 0.001); r = 0.55 (P < 0.001); r = 0.44 (P = 0.002); and r = 0.58 (P < 0.001), respectively]. Similar correlations were observed for IGFBP-3 concentrations. Correlations remained after adjustment for GA, mean protein and caloric intakes, gender, severe brain damage, and steroid treatment. Protein and caloric intakes were not related to brain volumes. Infants with BW small for GA had lower mean concentrations of IGF-I (P = 0.006) and smaller brain volumes (P = 0.001–0.013) than infants with BW appropriate for GA. Conclusion: Postnatal IGF-I and IGFBP-3 concentrations are positively associated with brain volumes at 40 GW in very preterm infants. Normalization of the IGF-I axis, directly or indirectly, may support normal brain development in very preterm infants.

Publisher

The Endocrine Society

Subject

Biochemistry (medical),Clinical Biochemistry,Endocrinology,Biochemistry,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3