Regulation of Pituitary Progenitor Differentiation by β-Catenin

Author:

Youngblood Julie L1,Coleman Tanner F1,Davis Shannon W1

Affiliation:

1. Department of Biological Sciences, University of South Carolina, Columbia, South Carolina

Abstract

Abstract The pituitary gland is a critical organ that is necessary for many physiological processes, including growth, reproduction, and stress response. The secretion of pituitary hormones from specific cell types regulates these essential processes. Pituitary hormone cell types arise from a common pool of pituitary progenitors, and mutations that disrupt the formation and differentiation of pituitary progenitors result in hypopituitarism. Canonical WNT signaling through CTNNB1 (β-catenin) is known to regulate the formation of the POU1F1 lineage of pituitary cell types. When β-catenin is deleted during the initial formation of the pituitary progenitors, Pou1f1 is not transcribed, which leads to the loss of the POU1F1 lineage. However, when β-catenin is deleted after lineage specification, there is no observable effect. Similarly, the generation of a β-catenin gain-of-function allele in early pituitary progenitors or stem cells results in the formation of craniopharyngiomas, whereas stimulating β-catenin in differentiated cell types has no effect. PROP1 is a pituitary-specific transcription factor, and the peak of PROP1 expression coincides with a critical time point in pituitary organogenesis—that is, after pituitary progenitor formation but before lineage specification. We used a Prop1-cre to conduct both loss- and gain-of-function studies on β-catenin during this critical time point. Our results demonstrate that pituitary progenitors remain sensitive to both loss and gain of β-catenin at this time point, and that either manipulation results in hypopituitarism.

Funder

University of South Carolina

Publisher

The Endocrine Society

Subject

Endocrinology

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3