Analysis of β-Cell Death in Type 1 Diabetes by Droplet Digital PCR

Author:

Usmani-Brown Sahar1,Lebastchi Jasmin2,Steck Andrea K.3,Beam Craig4,Herold Kevan C.2,Ledizet Michel1

Affiliation:

1. L2 Diagnostics (S.U.-B., M.L.), New Haven, Connecticut 06511

2. Departments of Immunobiology and Internal Medicine (J.L., K.C.H.), Yale University School of Medicine, New Haven, Connecticut 06520

3. Barbara Davis Center for Childhood Diabetes (A.K.S.), University of Colorado Denver, Aurora, Colorado 80045

4. Department of Pediatrics (C.B.), University of South Florida, Tampa, Florida 33606

Abstract

Abstract Type 1 diabetes (T1D) and other forms of diabetes are due to the killing of β-cells. However, the loss of β-cells has only been assessed by functional studies with a liquid meal or glucose that can be affected by environmental factors. As an indirect measure of β-cell death, we developed an assay using a novel droplet digital PCR that detects INS DNA derived from β-cells. The release of INS DNA with epigenetic modifications (unmethylated CpG) identifies the β-cellular source of the DNA. The assay can detect unmethylated DNA between a range of approximately 600 copies/μL and 0.7 copies/μL, with a regression coefficient for the log transformed copy number of 0.99. The assay was specific for unmethylated INS DNA in mixtures with methylated INS DNA. We analyzed the levels of unmethylated INS DNA in patients with recent onset T1D and normoglycemia subjects at high risk for disease and found increased levels of unmethylated INS DNA compared with nondiabetic control subjects (P < .0001). More than one-third of T1D patients and one-half of at-risk subjects had levels that were more than 2 SD than the mean of nondiabetic control subjects. We conclude that droplet digital PCR is a useful method to detect β-cell death and is more specific and feasible than other methods, such as nested real-time PCR. This new method may be a valuable tool for analyzing pathogenic mechanisms and the effects of treatments in all forms of diabetes.

Publisher

The Endocrine Society

Subject

Endocrinology

Cited by 37 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3