Differentially Regulated Protein Kinase A (PKA) Activity in Adipose Tissue and Liver Is Associated With Resistance to Diet-Induced Obesity and Glucose Intolerance in Mice That Lack PKA Regulatory Subunit Type IIα

Author:

London Edra1,Nesterova Maria1,Sinaii Ninet2,Szarek Eva1,Chanturiya Tatyana3,Mastroyannis Spyridon A.14,Gavrilova Oksana3,Stratakis Constantine A.1

Affiliation:

1. Section on Endocrinology and Genetics (E.L., M.N., E.S., S.A.M., C.A.S.), Program on Developmental Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Biostatistics Bethesda, Maryland 20892

2. Clinical Epidemiology Service (N.S.), Bethesda, Maryland 20892

3. CC, National Institutes of Health, Mouse Metabolism Core Laboratory (T.C., O.G.), National Institute of Diabetes and Digestive and Kidney Diseases, and Eunice Kennedy Shriver National Institute of Child Health Bethesda, Maryland 20892

4. Human Development intramural Summer Student Program (S.A.M.), Bethesda, Maryland 20892

Abstract

Abstract The cAMP-dependent protein kinase A (PKA) signaling system is widely expressed and has a central role in regulating cellular metabolism in all organ systems affected by obesity. PKA has four regulatory (RIα, RIIα, RIβ, RIIβ) and four catalytic (Cα, Cβ, Cγ, Prkx) subunit isoforms that have tissue-specific expression profiles. In mice, knockout (KO) of RIIβ, the primary PKA regulatory subunit in adipose tissue or knockout of the catalytic subunit Cβ resulted in a lean phenotype that resists diet-induced obesity and associated metabolic complications. Here we report that the disruption of the ubiquitously expressed PKA RIIα subunit in mice (RIIαKO) confers resistance to diet-induced obesity, glucose intolerance, and hepatic steatosis. After 2-week high-fat diet exposure, RIIαKO mice weighed less than wild-type littermates. Over time this effect was more pronounced in female mice that were also leaner than their wild-type counterparts, regardless of the diet. Decreased intake of a high-fat diet contributed to the attenuated weight gain in RIIαKO mice. Additionally, RIIα deficiency caused differential regulation of PKA in key metabolic organs: cAMP-stimulated PKA activity was decreased in liver and increased in gonadal adipose tissue. We conclude that RIIα represents a potential target for therapeutic interventions in obesity, glucose intolerance, and nonalcoholic fatty liver disease.

Publisher

The Endocrine Society

Subject

Endocrinology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3