Effects of Cellular Interactions on Calcium Dynamics in Prolactin-Secreting Cells*

Author:

Abraham Elizabeth J.1,Villalobos Carlos1,Frawley L. Stephen1

Affiliation:

1. Laboratory of Molecular Dynamics, Department of Cell Biology and Anatomy, Medical University of South Carolina, Charleston, South Carolina 29425

Abstract

Abstract Signals derived from other pituitary cells can have a dramatic effect on PRL gene expression and secretion by mammotropes. However, the intracellular mechanisms by which these effects are manifested on the target cell remain unexplored. Inasmuch as calcium is a key modulator of both gene expression and hormone export in mammotropes, we evaluated the effects of cell to cell contact vs. specific cellular interactions on calcium dynamics within these cells. This was accomplished by digital-imaging fluorescence microscopy of fura-2 in pituitary cells that were isolated in culture (singles) or adjoining one other cell (doublets). After calcium imaging, we then subjected cells to immunocytochemistry for PRL. Doublets were further categorized into mammotropes attached to another mammotrope (M-M) or to a nonmammotrope (M-nonM). We then calculated and compared Mean[ Ca2+]i values as well as Oscillation Indices (which reflect the oscillatory behavior of cells) in singles and doublets and found that they were not different (P> 0.05). However, the phenotype of the adjoining cell had a profound influence on both of these calcium parameters, such that the presence of one mammotrope could consistently decrease (P < 0.05) the Mean [Ca2+]i value (39.17 ± 3.83 vs. 56.24 ± 5.56 in M-nonM) and Oscillation Index (10.19 ± 1.76 vs. 21.21 ± 3.73 in M-nonM) of its neighboring counterpart. A more detailed analysis of oscillatory patterns in these cells revealed that nonoscillators were more abundant in M-M (23%) than in M-nonM (12%) doublets. Taken together, our results indicate that PRL-secreting cells convey a signal that dampens the oscillatory behavior of neighboring mammotropes. Thus, it appears that it is the phenotype rather than the physical presence of a neighbor that controls intercellular regulation of calcium dynamics among mammotropes.

Publisher

The Endocrine Society

Subject

Endocrinology

Reference29 articles.

1. Intercellular communication within the anterior pituitary influencing the secretion of hypophysial hormones.;Schwartz;Endocr Rev,1992

2. Paracrine interactions in the anterior pituitary: role in the regulation of prolactin and growth hormone secretion.;Denef;Front Neuroendocrinol,1986

3. The forest, the trees and the anterior pituitary;Schwartz;Mol Cell Endocrinol,1992

4. Prolactin secretion by cultured anterior pituitary cells: influence of culture conditions and endocrine status of the pituitary donor.;Hoefer;Mol Cell Endocrinol,1984

5. Anterior pituitary cells: getting to know their neighbors;Perez;Mol Cell Endocrinol,1995

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3