Loss-of-Function Mutation of the Galanin Gene Is Associated with Perturbed Islet Function in Mice

Author:

Ahrén Bo1,Pacini Giovanni2,Wynick David3,Wierup Nils4,Sundler Frank4

Affiliation:

1. Departments of Medicine (B.A.), Lund University, SE-221 84 Lund, Sweden

2. Metabolic Unit, Institute of Biomedical Engineering, National Research Council (G.P.), 35127 Padova, Italy

3. Department of Medicine (D.W.), Bristol University, Bristol BS2 8HW, United Kingdom

4. Physiological Sciences (N.W., F.S.), Lund University, SE-221 84 Lund, Sweden

Abstract

Abstract The neuropeptide galanin is expressed in sympathetic nerve terminals that surround islet cells and inhibits insulin secretion. To explore its role for islet function, we studied mice with a loss-of-function mutation in the galanin gene [galanin knockout (KO) mice]. Intravenous 2-deoxy-glucose, which activates both the sympathetic and parasympathetic branches of the autonomic nervous system, caused an initial (1–5 min) inhibition of insulin secretion that was impaired in galanin KO mice (P = 0.027), followed by a subsequent stimulation of insulin secretion that was augmented in galanin KO mice (P < 0.01). Similar effects were seen after chemical sympathectomy by 6-hydroxydopamine. In contrast, galanin KO mice had a reduced insulin response to glucose, both in vivo (P < 0.001) and in isolated islets (P < 0.001), and to arginine, both in vivo (P = 0.012) and in vitro (P = 0.018). During an iv glucose tolerance test, galanin KO mice had impaired glucose disposal (P = 0.005) due to a reduced insulin response (P < 0.001) and a reduced insulin-independent glucose elimination (glucose effectiveness; P = 0.040). Insulin sensitivity, as judged by a euglycemic, hyperinsulinemic clamp technique, was slightly increased in galanin KO mice (P = 0.032). We conclude that 1) galanin may contribute to sympathetic influences inhibiting insulin secretion in mice, and 2) galanin KO mice have a reduced glucose-induced insulin secretion.

Publisher

The Endocrine Society

Subject

Endocrinology

Reference41 articles.

Cited by 66 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3