Adrenocorticotropic Hormone Directly Stimulates Testosterone Production by the Fetal and Neonatal Mouse Testis

Author:

O’Shaughnessy P. J.1,Fleming L. M.1,Jackson G.1,Hochgeschwender U.2,Reed P.2,Baker P. J.1

Affiliation:

1. Institute of Comparative Medicine (P.J.O’S., L.M.F., G.J., P.J.B.), University of Glasgow Veterinary School, Glasgow, Scotland G61 1QH, United Kingdom

2. Developmental Biology Program (U.H., P.R.), Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104

Abstract

AbstractAdult Leydig cell steroidogenesis is dependent on LH but fetal Leydig cells can function independently of gonadotropin stimulation. To identify factors that may be involved in regulation of fetal Leydig cells expressed sequence tag libraries from fetal and adult testes were compared, and fetal-specific genes identified. The ACTH receptor [melanocortin type 2 receptor (Mc2r)] was identified within this fetal-specific group. Subsequent real-time PCR studies confirmed that Mc2r was expressed in the fetal testis at 100-fold higher levels than in the adult testis. Incubation of fetal or neonatal testes with ACTH in vitro stimulated testosterone production more than 10-fold, although ACTH had no effect on testes from animals aged 20 d or older. The steroidogenic response of fetal and neonatal testes to a maximally stimulating dose of human chorionic gonadotropin was similar to the response shown to ACTH. The ED50 for ACTH, measured in isolated fetal and neonatal testicular cells, was 5 × 10−10m and the lowest dose of ACTH eliciting a response was 2 × 10−11m. Circulating ACTH levels in fetal mice were around 8 × 10−11m. Neither α-MSH nor γ-MSH had any effect on androgen production in vitro at any age. Fetal testosterone levels were normal in mice that lack circulating ACTH (proopiomelanocortin-null) indicating that ACTH is not essential for fetal Leydig cell function. Results show that both LH and ACTH can regulate testicular steroidogenesis during fetal development in the mouse and suggest that fetal Leydig cells, but not adult Leydig cells, are sensitive to ACTH stimulation.

Publisher

The Endocrine Society

Subject

Endocrinology

Cited by 103 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3