Attenuation by Reactive Oxygen Species of Glucocorticoid Suppression on Proopiomelanocortin Gene Expression in Pituitary Corticotroph Cells

Author:

Asaba Koichi12,Iwasaki Yasumasa1,Yoshida Masanori3,Asai Masato3,Oiso Yutaka3,Murohara Toyoaki3,Hashimoto Kozo2

Affiliation:

1. Department of Clinical Pathophysiology (K.A., Y.I.), Nagoya University Graduate School of Medicine and Hospital, Nagoya 466-8550, Japan

2. Second Department of Internal Medicine (K.A., K.H.), Kochi Medical School, Nankoku, Kochi 783-8505, Japan

3. Department of Internal Medicine (M.Y., M.A., Y.O., T.M.), Nagoya University Graduate School of Medicine and Hospital, Nagoya 466-8550, Japan

Abstract

AbstractUp-regulation of hypothalamo-pituitary-adrenal axis is maintained during acute inflammation and/or infection, in the face of sustained elevation of plasma glucocorticoid hormone. Inflammatory stress is usually associated with high plasma cytokine levels and increased generation of reactive oxygen species (ROS) as well. In this study, we examined the effect of ROS on the negative feedback regulation of glucocorticoid in hypothalamo-pituitary-adrenal axis using AtT20 corticotroph cells in vitro. When the cells were treated with H2O2, glucocorticoid suppression on the proopiomelanocortin gene promoter activity was attenuated in a dose-dependent manner. H2O2 also inhibited the ligand-stimulated nuclear translocation of glucocorticoid receptor. The released glucocorticoid suppression by H2O2 was not observed when the cells were cotreated with antioxidants. Together, these results suggest that increased ROS generation in the oxidative redox state attenuates the glucocorticoid negative feedback system, at least in part, by interfering with the nuclear translocation of glucocorticoid receptor and eliminating the repression on proopiomelanocortin gene expression.

Publisher

The Endocrine Society

Subject

Endocrinology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3