Inhibition of Prolactin (PRL)-Induced Proliferative Signals in Breast Cancer Cells by a Molecular Mimic of Phosphorylated PRL, S179D-PRL

Author:

Schroeder Matthew D.1,Brockman Jennifer L.1,Walker Ameae M.2,Schuler Linda A.1

Affiliation:

1. Department of Comparative Biosciences (M.D.S., J.L.B., L.A.S.), University of Wisconsin, Madison, Wisconsin 53706

2. Division of Biomedical Sciences (A.M.W.), University of California, Riverside, California 92521

Abstract

Abstract Posttranslational modifications of prolactin (PRL), including phosphorylation, vary with physiologic state and alter biologic activity. In light of the growing evidence for a role for PRL in proliferation in mammary cancer, we examined the ability of a mimic of phosphorylated human PRL, S179D-PRL, to initiate signals to several pathways in mammary tumor cells alone and in combination with unmodified PRL. Unmodified PRL employed multiple pathways to increase cellular proliferation and cyclin D1 levels in PRL-deficient MCF-7 cells. S179D-PRL was a weak agonist compared with unmodified PRL with regard to cellular proliferation, cyclin D1 levels, and phosphorylation of signal transducer and activator of transcription 5 and ERKs. However, S179D-PRL was a potent antagonist of unmodified PRL to these endpoints. In contrast to the reduced levels of the long isoform of the PRL receptor observed in response to a 3-d incubation with unmodified PRL, S179D-PRL up-regulated expression of this isoform, 4-fold. These studies support the utility of this mutant as a PRL antagonist to proliferative signals in mammary epithelial cells, including a potential role in breast cancer therapeutics.

Publisher

The Endocrine Society

Subject

Endocrinology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3