Adrenocorticotropin/3′,5′-Cyclic AMP-Mediated Transcription of the Scavenger akr1-b7 Gene in Adrenocortical Cells Is Dependent on Three Functionally Distinct Steroidogenic Factor-1-Responsive Elements

Author:

Val Pierre,Aigueperse Christelle,Ragazzon Bruno,Veyssière Georges,Lefrançois-Martinez Anne-Marie,Martinez Antoine

Abstract

AbstractThe akr1-b7 gene encodes a scavenger enzyme expressed in steroidogenic glands under pituitary control. In the zona fasciculata of the adrenal cortex where its expression is controlled by ACTH, AKR1-B7 detoxifies isocaproaldehyde produced during the first step of steroidogenesis. Three steroidogenic factor-1 (SF-1)-responsive elements (SFREs) are contained within the −510/+41 promoter region, which was previously demonstrated to drive gene expression in transgenic mice adrenal cortex. All these sequences bind at least SF-1 in Y1 adrenocortical cell nuclear extracts and can be activated by overexpression of this factor in HeLa cells. However, the three SFREs show distinct properties regarding akr1-b7 promoter activity in Y1 cells. Whereas the proximal −102 SFRE supports basal promoter activity, the −458 bona fide SFRE is essential for both basal promoter activity and cAMP responsiveness, although it is unresponsive to cAMP when isolated from its promoter context. This suggests that SF-1 is not a cAMP-responsive factor per se. The neighboring SFRE at −503 is a palindromic sequence that binds monomeric and heteromeric SF-1 as well as an adrenal-specific complex. Using MA-10 Leydig cells and Y1–10r9 mutant cells, we provide evidence that its activity in adrenocortical cells depends on the binding of the adrenal-specific factor, which is required for basal and cAMP-induced promoter activity. Furthermore, the −503 site has intrinsic cAMP-sensing ability in Y1 cells, which is correlated with increased adrenal-specific complex binding. Collectively, our results suggest that cAMP responsiveness of the akr1-b7 promoter is achieved through cooperation between the adrenal-specific factor bound to the −503 site and SF-1 bound to the −458 site.

Publisher

The Endocrine Society

Subject

Endocrinology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3