Endogenous Hypothalamic Somatostatins Differentially Regulate Growth Hormone Secretion from Goldfish Pituitary Somatotropes in Vitro

Author:

Yunker Warren K.1,Smith Sean2,Graves Chad2,Davis Philip J.2,Unniappan Surajlal2,Rivier Jean E.3,Peter Richard E.2,Chang John P.2

Affiliation:

1. Faculty of Medicine and Dentistry (W.K.Y.), University of Alberta, Edmonton, Alberta, Canada T6G 2R7

2. Department of Biological Sciences (W.K.Y., S.S., C.G., P.J.D., S.U., R.E.P., J.P.C.), Faculty of Science, University of Alberta, Edmonton, Alberta, Canada T6G 2E9

3. The Salk Institute (J.E.R.), La Jolla, California 92037

Abstract

AbstractUsing Southern blot analysis of RT-PCR products, mRNA for three different somatostatin (SS) precursors (PSS-I, -II, and -III), which encode for SS14, goldfish brain (gb)SS28, and [Pro2]SS14, respectively, were detected in goldfish hypothalamus. PSS-I and -II mRNA, but not PSS-III mRNA, were also detected in cultured pituitary cells. We subsequently examined the effects of the mature peptides, SS14, gbSS28, and [Pro2]SS14, on somatotrope signaling and GH secretion. The gbSS28 was more potent than either SS14 or [Pro2]SS14 in reducing basal GH release but was the least effective in reducing basal cellular cAMP. The ability of SS14, [Pro2]SS14, and gbSS28 to attenuate GH responses to GnRH were comparable. However, gbSS28 was less effective than SS14 and [Pro2]SS14 in diminishing dopamine- and pituitary adenylate cyclase-activating polypeptide-stimulated GH release, as well as GH release resulting from the activation of their underlying signaling cascades. In contrast, the actions of a different 28-amino-acid SS, mammalian SS28, were more similar to those of SS14 and [Pro2]SS14. We conclude that, in goldfish, SSs differentially couple to the intracellular cascades regulating GH secretion from pituitary somatotropes. This raises the possibility that such differences may allow for the selective regulation of various aspects of somatotrope function by different SS peptides.

Publisher

The Endocrine Society

Subject

Endocrinology

Cited by 45 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3