Rhythmic Secretion of Prolactin in Rats: Action of Oxytocin Coordinated by Vasoactive Intestinal Polypeptide of Suprachiasmatic Nucleus Origin

Author:

Egli Marcel1,Bertram Richard2,Sellix Michael T.1,Freeman Marc E.1

Affiliation:

1. Departments of Biological Science (M.E., M.T.S., M.E.F.), Florida State University, Tallahassee, Florida 32306

2. Mathematics and Kasha Laboratory of Biophysics (R.B.), Florida State University, Tallahassee, Florida 32306

Abstract

Abstract Prolactin (PRL) is secreted from lactotrophs of the anterior pituitary gland of rats in a unique pattern in response to uterine cervical stimulation (CS) during mating. Surges of PRL secretion occur in response to relief from hypothalamic dopaminergic inhibition and stimulation by hypothalamic releasing neurohormones. In this study, we characterized the role of oxytocin (OT) in this system and the involvement of vasoactive intestinal polypeptide (VIP) from the suprachiasmatic nucleus (SCN) in controlling OT and PRL secretion of CS rats. The effect of OT on PRL secretion was demonstrated in cultured lactotrophs showing simultaneous enhanced secretion rate and increased intracellular Ca2+. Neurosecretory OT cells of the hypothalamic paraventricular nucleus that express VIP receptors were identified by using immunocytochemical techniques in combination with the retrogradely transported neuronal tracer Fluoro-Gold (iv injected). OT measurements of serial blood samples obtained from ovariectomized (OVX) CS rats displayed a prominent increase at the time of the afternoon PRL peak. The injection of VIP antisense oligonucleotides into the SCN abolished the afternoon increase of OT and PRL in CS-OVX animals. These findings suggest that VIP from the SCN contributes to the regulation of OT and PRL secretion in CS rats. We propose that in CS rats the regulatory mechanism(s) for PRL secretion comprise coordinated action of neuroendocrine dopaminergic and OT cells, both governed by the daily rhythm of VIP-ergic output from the SCN. This hypothesis is illustrated with a mathematical model.

Publisher

The Endocrine Society

Subject

Endocrinology

Cited by 76 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3