Enhanced Binding to the Molecular Chaperone BiP Slows Thyroglobulin Export from the Endoplasmic Reticulum

Author:

Muresan Zoia1,Arvan Peter2

Affiliation:

1. Program in Biological and Biomedical Sciences (Z.M.) Harvard Medical School Boston, Massachusetts 02215

2. Division of Endocrinology and Department of Developmental and Molecular Biology (P.A.) Albert Einstein College of Medicine Bronx, New York 10461

Abstract

Abstract To examine how binding of BiP (a molecular chaperone of the hsp70 family that resides in the endoplasmic reticulum) influences the conformational maturation of thyroglobulin (Tg, the precursor for thyroid hormone synthesis), we have developed a system of recombinant Tg stably expressed in wild-type Chinese hamster ovary (CHO) cells and CHO-B cells genetically manipulated for selectively increased BiP expression. The elevation of immunoreactive BiP in CHO-B cells is comparable to that seen during the unfolded protein response in the thyrocytes of certain human patients and animals suffering from congenital hypothyroid goiter with defective Tg. However, in CHO-B cells, we expressed Tg containing no mutations that induce misfolding (i.e. no unfolded protein response), so that levels of all other endoplasmic reticulum chaperones were normal. Increased availability of BiP did not accelerate Tg secretion; rather, the export of newly synthesized Tg was delayed. Tg detained intracellularly was concentrated in the endoplasmic reticulum. By coimmunoprecipitation, BiP exhibited enhanced binding to Tg in CHO-B cells. Moreover, two-dimensional gel analysis showed that BiP associated especially well with intracellular Tg containing mispaired disulfide bonds, thought to represent early Tg folding intermediates. An endoplasmic reticulum chaperone of the hsp90 family, GRP94, was also associated in Tg-chaperone complexes. The results suggest that increased binding of BiP to Tg leads to its delayed conformational maturation in the endoplasmic reticulum.

Publisher

The Endocrine Society

Subject

Endocrinology,Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3