Affiliation:
1. Genetics and Genomic Medicine Programme, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
2. Great Ormond Street Hospital, London, United Kingdom
3. Division de Pediatria, Escuela de Medicina, Pontificia Universidad Catolica de Chile, Santiago, Chile
4. NE Thames Genetics Service, Great Ormond Street Hospital, London, United Kingdom
Abstract
Abstract
Context
Congenital hypopituitarism (CH) is rarely observed in combination with severe joint contractures (arthrogryposis). Schaaf-Yang syndrome (SHFYNG) phenotypically overlaps with Prader-Willi syndrome, with patients also manifesting arthrogryposis. L1 syndrome, a group of X-linked disorders that include hydrocephalus and lower limb spasticity, also rarely presents with arthrogryposis.
Objective
We investigated the molecular basis underlying the combination of CH and arthrogryposis in five patients.
Patients
The heterozygous p.Q666fs*47 mutation in the maternally imprinted MAGEL2 gene, previously described in multiple patients with SHFYNG, was identified in patients 1 to 4, all of whom manifested growth hormone deficiency and variable SHFYNG features, including dysmorphism, developmental delay, sleep apnea, and visual problems. Nonidentical twins (patients 2 and 3) had diabetes insipidus and macrocephaly, and patient 4 presented with ACTH insufficiency. The hemizygous L1CAM variant p.G452R, previously implicated in patients with L1 syndrome, was identified in patient 5, who presented with antenatal hydrocephalus.
Results
Human embryonic expression analysis revealed MAGEL2 transcripts in the developing hypothalamus and ventral diencephalon at Carnegie stages (CSs) 19, 20, and 23 and in the Rathke pouch at CS20 and CS23. L1CAM was expressed in the developing hypothalamus, ventral diencephalon, and hindbrain (CS19, CS20, CS23), but not in the Rathke pouch.
Conclusion
We report MAGEL2 and L1CAM mutations in four pedigrees with variable CH and arthrogryposis. Patients presenting early in life with this combined phenotype should be examined for features of SHFYNG and/or L1 syndrome. This study highlights the association of hypothalamo-pituitary disease with MAGEL2 and L1CAM mutations.
Funder
Great Ormond Street Hospital Charity
Medical Research Foundation
Joint MRC/Wellcome Trust: Human Developmental Biology Resource
Wellcome Trust
The Deciphering Development Disorders (DDD) study: commissioned by the Health Innovation Challenge Fund
partnership between Wellcome and the Department of Health, and the Wellcome Sanger Institute
Subject
Biochemistry (medical),Clinical Biochemistry,Endocrinology,Biochemistry,Endocrinology, Diabetes and Metabolism
Cited by
20 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献