The Gonadotropin-Releasing Hormone (GnRH) Neuronal Population Is Normal in Size and Distribution in GnRH-Deficient and GnRH Receptor-Mutant Hypogonadal Mice

Author:

Gill John C.1,Wadas Brandon2,Chen Peilin3,Portillo Wendy4,Reyna Andrea4,Jorgensen Elisa1,Mani Shaila4,Schwarting Gerald A.5,Moenter Suzanne M.3,Tobet Stuart2,Kaiser Ursula B.1

Affiliation:

1. Division of Endocrinology, Diabetes, and Hypertension (J.C.G., E.J., U.B.K.), Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115

2. Department of Biomedical Sciences (B.W., S.T.), Colorado State University, Fort Collins, Colorado 80523

3. Departments of Medicine and Cell Biology (P.C., S.M.M.), University of Virginia, Charlottesville, Virginia 22908

4. Department of Molecular and Human Genetics (W.P., A.R., S.M.), Baylor College of Medicine, Houston, Texas 77030

5. Department of Cell Biology (G.A.S.), University of Massachusetts Medical School, Waltham, Massachusetts 01655

Abstract

Hypothalamic GnRH neurons are essential for initiation and regulation of reproductive function. In addition to pituitary gonadotrope stimulation, activity of GnRH through its receptor (GnRHR) has been suggested to include autocrine regulation of the GnRH neuron. Two hypogonadal mouse strains, the Gnrh1 mutant (hpg) mice and Gnrhr mutant mice were used to investigate the potential role of GnRH signaling in the proper development and maintenance of GnRH neurons. Immunocytochemical analysis of heterozygous hpg mice revealed a GnRH neuron population that was normal in size and distribution, indicating no effect from reduced Gnrh1 gene dosage on the neurons themselves. To visualize GnRH neurons in homozygous GnRH-deficient hpg mice, heterozygous hpg mice were crossed with GnRH-green fluorescent protein (GFP) transgenic mice with targeted expression of the GFP reporter gene in GnRH neurons. Analysis of forebrains of homozygous hpg/GFP-positive mice immunostained for GFP revealed a normal population size and appropriate distribution of GnRH neurons in hpg mice, with immunoreactive neuronal processes present at the median eminence. Similarly, adult mice deficient in functional GnRHR possessed a full complement of GnRH neurons in the basal forebrain that was indistinguishable from the distribution of GnRH neurons in their wild-type counterparts. Moreover, hpg/GFP neurons retained the ability to generate spontaneous bursts of action potential firing activity, suggesting that GnRH peptide is not required for this function. These data establish that autocrine-paracrine GnRH-signaling is not a prerequisite for the developmental migration of GnRH neurons into the brain or for the projection of GnRH neurosecretory axons.

Publisher

The Endocrine Society

Subject

Endocrinology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3