Dorsal Hindbrain 5′-Adenosine Monophosphate-Activated Protein Kinase as an Intracellular Mediator of Energy Balance

Author:

Hayes Matthew R.1,Skibicka Karolina P.1,Bence Kendra K.2,Grill Harvey J.1

Affiliation:

1. Graduate Groups of Psychology and Neuroscience (M.R.H., K.P.S., H.J.G.), University of Pennsylvania, Philadelphia, Pennsylvania 19104

2. Department of Animal Biology, School of Veterinary Medicine (K.K.B.), University of Pennsylvania, Philadelphia, Pennsylvania 19104

Abstract

The fuel-sensing enzyme AMP-activated protein kinase (AMPK) has been implicated in central nervous system control of energy balance. Hypothalamic AMPK activity is increased by food deprivation, and this elevation is inhibited by refeeding or by leptin treatment. The contribution of extrahypothalamic AMPK activity in energy balance control has not been addressed. Here, we investigate the effects of physiological state on the AMPK activity in hindbrain nucleus tractus solitarius (NTS) neurons because treatments that reduce energy availability in these neurons trigger behavioral, endocrine, and autonomic responses to restore energy balance. Food-deprived rats showed significantly increased AMPK activity in both NTS- and hypothalamus-enriched lysates compared with those that were ad libitum fed. Pharmacological inhibition of AMPK activity in medial NTS neurons, by intraparenchymal injection of compound C, suppressed food intake and body weight gain compared with vehicle. Fourth ventricle (4th icv) compound C delivery increased heart rate and spontaneous activity in free-moving rats. Suppression of AMPK activity has been implicated in leptin’s anorectic action in the hypothalamus. Given the role of leptin signaling in food intake inhibition within the medial NTS, we also examined whether stimulation of hindbrain AMPK by 4th icv administration of 5-aminoimidazole-4-carboxamide-riboside (AICAR), an AMP-mimicking promoter of AMPK activity, could attenuate the inhibition of food intake by 4th icv leptin. The intake-suppressive effects of leptin (at 2 and 4 h) were completely reversed by AICAR. We conclude that 1) hindbrain AMPK activity contributes to energy balance control through regulation of food intake and energy expenditure, 2) leptin’s intake-reducing effects in the NTS are meditated by AMPK, and 3) central nervous system AMPK controls whole-body homeostasis at anatomically distributed sites across the neuraxis.

Publisher

The Endocrine Society

Subject

Endocrinology

Cited by 71 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3