Defects of Prostate Development and Reproductive System in the Estrogen Receptor-α Null Male Mice

Author:

Chen Ming1,Hsu Iawen1,Wolfe Andrew2,Radovick Sally2,Huang KuoHsiang1,Yu Shengqiang1,Chang Chawnshang1,Messing Edward M.1,Yeh Shuyuan1

Affiliation:

1. Departments of Urology and Pathology, University of Rochester Medical Center (M.C., I.H., K.H., S.Y., C.C., E.M.M., S.Y.), Rochester, New York 14642

2. Department of Pediatrics, Johns Hopkins University College of Medicine (A.W., S.R.), Baltimore, Maryland 21287

Abstract

The estrogen receptor-α knockout (ERαKO, ERα−/−) mice were generated via the Cre-loxP system by mating floxed ERα mice with β-actin (ACTB)-Cre mice. The impact of ERα gene deletion in the male reproductive system was investigated. The ACTB-Cre/ERα−/− male mice are infertile and have lost 90% of epididymal sperm when compared with wild-type mice. Serum testosterone levels in ACTB-Cre/ERα−/− male mice are 2-fold elevated. The ACTB-Cre/ERα−/− testes consist of atrophic and degenerating seminiferous tubules with less cellularity in the disorganized seminiferous epithelia. Furthermore, the ventral and dorsal-lateral prostates of ACTB-Cre/ERα−/− mice display reduced branching morphogenesis. Loss of ERα could also be responsible for the decreased fibroblast proliferation and changes in the stromal content. In addition, we found bone morphogenetic protein, a mesenchymal inhibitor of prostatic branching morphogenesis, is significantly up-regulated in the ACTB-Cre/ERα−/− prostates. Collectively, these results suggest that ERα is required for male fertility, acts through a paracrine mechanism to regulate prostatic branching morphogenesis, and is involved in the proliferation and differentiation of prostatic stromal compartment.Newly generated ACTB-Cre/Estrogen receptor alpha knockout (ERα-/-) male mice show that ERα acts through a paracrine mechanism to regulate prostatic branching morphogenesis and is involved in the proliferation and differentiation of prostatic stoma.

Publisher

The Endocrine Society

Subject

Endocrinology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3