Affiliation:
1. Unité de Biologie du Développement et de la Reproduction (K.H.A., P.B.), Département de Physiologie Animale, Institut National de la Recherche Agronomique (INRA), 78352 Jouy-en-Josas cedex, France
2. Laboratoire de Biologie du Stress Oxydant (C.G.), Département de Biologie Intégrée, Centre Hospitalier Universitaire de Grenoble, 38043 Grenoble cedex 9, France
Abstract
Reactive oxygen species (ROS) and their control by antioxidant enzymes are involved in the physiology of the female reproductive system. Thus, it is important to understand the regulation of key antioxidant enzymatic pathways. The roles of estrogen and progesterone in regulating the physiological functions of the endometrium have become central dogma. We examined the effects of ovarian steroids on superoxide dismutases (SOD1 and SOD2), catalase (CAT), glutathione peroxidase (GPX), and glutathione reductase (GSR) activities in the aglandular caruncular and glandular inter-caruncular endometrial tissues of ovariectomized (OVX) ewes and in OVX ewes treated with estradiol (E2), progesterone (P4), or both hormones according to schedules designed to produce physiological changes of these hormones during the estrous cycle. The activities SOD2, CAT, GPX and GSR in both endometrial tissues were unaffected by P4 treatment. The activity of SOD1 in the aglandular tissue was unaffected by P4 treatment, however this treatment decreased SOD1 activity in the glandular tissue (P < 0.01). Treatment with E2, either alone or in combination with P4, decreased SOD1 (P < 0.01), CAT (P < 0.01) and GPX (P < 0.05) activities in both endometrial tissues. The activity of GSR decreased only in the glandular tissue (P < 0.05) after E2 treatment, either alone or in combination with P4. No change in SOD2 activity was detected in both endometrial tissues after administration of E2, P4 or both hormones. This study provides the first firm evidence for the role of ovarian steroid hormones in the regulation of the activities of key antioxidant enzyme in the endometrium of female mammals.
Cited by
28 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献