Programming Neuroendocrine Stress Axis Activity by Exposure to Glucocorticoids during Postembryonic Development of the Frog, Xenopus laevis

Author:

Hu Fang1,Crespi Erica J.12,Denver Robert J.13

Affiliation:

1. Departments of Molecular, Cellular, and Developmental Biology (F.H., R.J.D.), The University of Michigan, Ann Arbor, Michigan 48109

2. Department of Biology (E.J.C.), Vassar College, Poughkeepsie, New York 12604

3. Ecology and Evolutionary Biology (R.J.D.), The University of Michigan, Ann Arbor, Michigan 48109

Abstract

Exposure to elevated glucocorticoids during early mammalian development can have profound, long-term consequences for health and disease. However, it is not known whether such actions occur in nonmammalian species, and if they do, whether the molecular physiological mechanisms are evolutionarily conserved. We investigated the effects of dietary restriction, which elevates endogenous corticosterone (CORT), or exposure to exogenous CORT added to the aquarium water of Xenopus laevis tadpoles on later-life measures of growth, feeding behavior, and neuroendocrine stress axis activity. Dietary restriction of prometamorphic tadpoles reduced body size at metamorphosis, but juvenile frogs increased food intake, showed catch-up growth through 21 d after metamorphosis, and had elevated whole-body CORT content compared with controls. Dietary restriction causes increased CORT in tadpoles, so to mimic this increase, we treated tadpoles with 100 nm CORT or vehicle for 5 or 10 d and then reared juvenile frogs to 2 months after metamorphosis. Treatment with CORT decreased body weight at metamorphosis, but juvenile frogs showed catch-up growth and had elevated basal plasma (CORT). Immunohistochemical analysis showed that CORT exposure as a tadpole led to decreased glucocorticoid receptor immunoreactivity in brain regions involved with stress axis regulation and in the anterior pituitary gland of juvenile frogs. The elevated CORT in juvenile frogs, which could result from decreased negative feedback owing to down-regulation of glucocorticoid receptor, may drive the hyperphagic response. Taken together, our findings suggest that long-term, stable phenotypic changes in response to elevated glucocorticoids early in life are an ancient and conserved feature of the vertebrate lineage.

Publisher

The Endocrine Society

Subject

Endocrinology

Cited by 73 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3