α-Melanocyte-Stimulating Hormone Counteracts the Suppressive Effect of UVB on Nrf2 and Nrf-Dependent Gene Expression in Human Skin

Author:

Kokot Agatha1,Metze Dieter1,Mouchet Nicolas23,Galibert Marie-Dominique2,Schiller Meinhard1,Luger Thomas A.1,Böhm Markus1

Affiliation:

1. Department of Dermatology and Ludwig Boltzmann Institute for Cell Biology and Immunobiology of the Skin (A.K., D.M., M.S., T.A.L., M.B.), University of Münster, 48149 Münster, Germany

2. Centre National de la Recherche Scientifique-Unité Mixte de Recherche 6061 (N.M., M.-D.G.), Institut de Génétique et Développement de Rennes, Equipe Régulation Transcriptionnelle, et Oncogenèse, Université de Rennes-1, Faculté de Médecine, Institut Fédératif de Recherche 140, 35402 Rennes, France

3. Proclaim Parc d’Affaires de la Bretèche (N.M.), 35760 Saint-Gregoire, France

Abstract

Human skin is constantly exposed to UV light, the most ubiquitous environmental stressor. Here, we investigated the expression and regulation of Nrf1-3, transcription factors crucially involved in protection against oxidative stress in human skin cells in vitro, ex vivo, and in situ. In particular, we examined whether α-MSH, a UV-induced peptide, is capable of modulating Nrf2 and Nrf-dependent gene expression. Nrf1, -2, and -3 were found to be expressed in various cutaneous cell types in vitro. Surprisingly, UVB irradiation at physiological doses (10 mJ/cm2) reduced Nrf2 and Nrf-dependent gene expression in normal keratinocytes and melanocytes in vitro as well as ex vivo in skin organ cultures. α-MSH alone significantly increased Nrf2 as well as Nrf-dependent heme oxygenase-1, γ-glutamylcysteine-synthetase, and glutathione-S-transferase Pi gene expression in both keratinocytes and melanocytes. This effect of α-MSH occurred at physiological doses and was due to transcriptional induction, mimicked by the artificial cAMP inducer forskolin, and blocked by protein kinase A pathway inhibition. In silico promoter analysis of Nrf2 further identified several putative binding sites for activator protein 1 and cAMP response element-binding protein, transcription factors typically activated by α-MSH. Importantly, α-MSH prevented or even overcompensated the UVB-induced suppression of Nrf2 and Nrf-dependent genes not only in normal keratinocytes and melanocytes in vitro but also in skin organ cultures. These findings, for the first time, show regulation of Nrf2 and Nrf-dependent genes by α-MSH. Our data also highlight a novel facet in the cytoprotective and antioxidative effector mechanisms of α-MSH and perhaps of related melanocortin peptides.

Publisher

The Endocrine Society

Subject

Endocrinology

Cited by 113 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3