Type 2 Deiodinase Expression Is Induced by Peroxisomal Proliferator-Activated Receptor-γ Agonists in Skeletal Myocytes

Author:

Grozovsky Renata1,Ribich Scott1,Rosene Matthew L.1,Mulcahey Michelle A.2,Huang Stephen A.2,Patti Mary Elizabeth3,Bianco Antonio C.1,Kim Brian W.1

Affiliation:

1. Thyroid Section (R.G., S.R., M.L.R., A.C.B., B.W.K.), Division of Endocrinology, Diabetes, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts 02115

2. Hypertension, Brigham and Women’s Hospital, Division of Endocrinology (M.A.M., S.A.H.), Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts 02115

3. Children’s Hospital Boston, Research Division (M.E.P.), Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts 02115

Abstract

The thyroid hormone activating type 2 deiodinase (D2) is known to play a role in brown adipose tissue-mediated adaptive thermogenesis in rodents, but the finding of D2 in skeletal muscle raises the possibility of a broader metabolic role. In the current study, we examined the regulation of the D2 pathway in primary skeletal muscle myoblasts taken from both humans and mice. We found that pioglitazone treatment led to a 1.6- to 1.9-fold increase in primary human skeletal myocyte D2 activity; this effect was seen with other peroxisomal proliferator-activated receptor-γ agonists. D2 activity in primary murine skeletal myotubes increased 2.8-fold in response to 5 μm pioglitazone and 1.6-fold in response to 5 nm insulin and increased in a dose-dependent manner in response to lithocholic acid (maximum response at 25 μm was ∼3.8-fold). We compared Akt phosphorylation in primary myotubes derived from wild-type and D2 knockout (D2KO) mice: phospho-Akt was reduced by 50% in the D2KO muscle after 1 nm insulin exposure. Expression of T3-responsive muscle genes via quantitative RT-PCR suggests that D2KO cells have decreased thyroid hormone signaling, which could contribute to the abnormalities in insulin signaling. D2 activity in skeletal muscle fragments from both murine and human sources was low, on the order of about 0.01 fmol/min · mg of muscle protein. The phenotypic changes seen with D2KO cells support a metabolic role for D2 in muscle, hinting at a D2-mediated linkage between thyroid hormone and insulin signaling, but the low activity calls into question whether skeletal muscle D2 is a major source of plasma T3.

Publisher

The Endocrine Society

Subject

Endocrinology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3