Mechanical Strain Inhibits Adipogenesis in Mesenchymal Stem Cells by Stimulating a Durable β-Catenin Signal

Author:

Sen Buer1,Xie Zhihui1,Case Natasha1,Ma Meiyun1,Rubin Clinton2,Rubin Janet1

Affiliation:

1. Department of Medicine (B.S., Z.X., N.C., M.M., J.R.), University of North Carolina, Chapel Hill, North Carolina 27599

2. Department of Biomedical Engineering (C.R.), State University of New York, Stony Brook, New York 11794

Abstract

The ability of exercise to decrease fat mass and increase bone mass may occur through mechanical biasing of mesenchymal stem cells (MSCs) away from adipogenesis and toward osteoblastogenesis. C3H10T1/2 MSCs cultured in highly adipogenic medium express peroxisome proliferator-activated receptor γ and adiponectin mRNA and protein, and accumulate intracellular lipid. Mechanical strain applied for 6 h daily inhibited expression of peroxisome proliferator-activated receptor γ and adiponectin mRNA by up to 35 and 50%, respectively, after 5 d. A decrease in active and total β-catenin levels during adipogenic differentiation was entirely prevented by daily application of mechanical strain; furthermore, strain induced β-catenin nuclear translocation. Inhibition of glycogen synthase kinase-3β by lithium chloride or SB415286 also prevented adipogenesis, suggesting that preservation of β-catenin levels was important to strain inhibition of adipogenesis. Indeed, mechanical strain inactivated glycogen synthase kinase-3β, which was preceded by Akt activation, indicating that strain transmits antiadipogenic signals through this pathway. Cells grown under adipogenic conditions showed no increase in osteogenic markers runt-related transcription factor (Runx) 2 and osterix (Osx); subsequent addition of bone morphogenetic protein 2 for 2 d increased Runx2 but not Osx expression in unstrained cultures. When cultures were strained for 5 d before bone morphogenetic protein 2 addition, Runx2 mRNA increased more than in unstrained cultures, and Osx expression more than doubled. As such, mechanical strain enhanced MSC potential to enter the osteoblast lineage despite exposure to adipogenic conditions. Our results indicate that MSC commitment to adipogenesis can be suppressed by mechanical signals, allowing other signals to promote osteoblastogenesis. These data suggest that positive effects of exercise on both fat and bone may occur during mesenchymal lineage selection.

Publisher

The Endocrine Society

Subject

Endocrinology

Reference43 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3