7-Oxysterols Modulate Glucocorticoid Activity in Adipocytes through Competition for 11β-Hydroxysteroid Dehydrogenase Type

Author:

Wamil Malgorzata1,Andrew Ruth1,Chapman Karen E.1,Street Jonathan1,Morton Nicholas M.1,Seckl Jonathan R.1

Affiliation:

1. Endocrinology Unit, Centre for Cardiovascular Science, The Queen’s Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, United Kingdom

Abstract

Obesity is associated with an increased risk of diabetes type 2, dyslipidemia, and atherosclerosis. These cardiovascular and metabolic abnormalities are exacerbated by excessive dietary fat, particularly cholesterol and its metabolites. High adipose tissue glucocorticoid levels, generated by the intracellular enzyme 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1), are also implicated in the pathogenesis of obesity, metabolic syndrome, and atherosclerosis. 11β-HSD1 also interconverts the atherogenic oxysterols 7-ketocholesterol (7KC) and 7β-hydroxycholesterol (7β-HC). Here, we report that 11β-HSD1 catalyzes the reduction of 7KC to 7β-HC in mature 3T3-L1 and 3T3-F442A adipocytes, leading to cellular accumulation of 7β-HC. Approximately 73% of added 7KC was reduced to 7β-HC within 24 h; this conversion was prevented by selective inhibition of 11β-HSD1. Oxysterol and glucocorticoid conversion by 11β-HSD1 was competitive and occurred with a physiologically relevant IC50 range of 450 nm for 7KC inhibition of glucocorticoid metabolism. Working as an inhibitor of 11β-reductase activity, 7KC decreased the regeneration of active glucocorticoid and limited the process of differentiation of 3T3-L1 preadipocytes. 7KC and 7β-HC did not activate liver X receptor in a transactivation assay, nor did they display intrinsic activation of the glucocorticoid receptor. However, when coincubated with glucocorticoid (10 nm), 7KC repressed, and 7β-HC enhanced, glucocorticoid receptor transcriptional activity. The effect of 7-oxysterols resulted from the modulation of 11β-HSD1 reaction direction, and could be ameliorated by overexpression of hexose 6-phosphate dehydrogenase, which supplies reduced nicotinamide adenine dinucleotide phosphate to 11β-HSD1. Thus, the activity and reaction direction of adipose 11β-HSD1 is altered under conditions of oxysterol excess, and could impact upon the pathophysiology of obesity and its complications.

Publisher

The Endocrine Society

Subject

Endocrinology

Cited by 43 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3