Subdiaphragmatic Vagotomy Prevents Drinking-Induced Reduction in Plasma Corticosterone in Water-Restricted Rats

Author:

Arnhold Michelle M.1,Yoder J. Marina1,Engeland William C.1

Affiliation:

1. Department of Neuroscience, Graduate Program in Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455

Abstract

Dehydrated rats exhibit a rapid inhibition of the hypothalamic-pituitary-adrenal axis after rehydration. Drinking activates vagal afferents that project to neurons in the nucleus tractus solitarius (NTS). We hypothesized that when dehydrated rats drink, vagal afferents stimulate NTS neurons initiating inhibition of hypothalamic-pituitary-adrenal activity. Experiments assessed NTS activity by measuring Fos expression. Rats were water restricted for 1 or 6 d, limiting access to water to 30 min/d in the morning. Drinking after single or repeated restriction increased Fos, demonstrating increased NTS activity. We next examined the contribution of the vagus by comparing hormonal responses after total subdiaphragmatic vagotomy or sham surgery. Water restriction for 6 d increased plasma arginine vasopressin (AVP), ACTH, and adrenal and plasma corticosterone in both groups. In sham rats, drinking reduced plasma AVP, ACTH, adrenal and plasma corticosterone by 7.5 min. In total subdiaphragmatic vagotomy rats, whereas drinking reduced plasma AVP, ACTH, and adrenal corticosterone, drinking did not reduce plasma corticosterone. To identify the source of vagal activity, hormonal responses to restriction-induced drinking were measured after common hepatic branch vagotomy (HBV). Although pituitary hormonal responses were not affected by HBV, the adrenal and plasma corticosterone responses to water restriction were reduced; in addition, drinking in HBV rats decreased adrenal corticosterone without changing plasma corticosterone. These data indicate that an intact vagus is necessary to reduce plasma corticosterone when water-restricted rats drink and that the common hepatic vagal branch contributes to the response. These findings implicate the vagus in augmenting rapid removal of circulating corticosterone during relief from stress.

Publisher

The Endocrine Society

Subject

Endocrinology

Reference50 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3