Intrahypothalamic Angiogenesis Induced by Osmotic Stimuli Correlates with Local Hypoxia: A Potential Role of Confined Vasoconstriction Induced by Dendritic Secretion of Vasopressin

Author:

Alonso Gérard1,Gallibert Evelyne1,Lafont Chrystel1,Guillon Gilles1

Affiliation:

1. Institut de Génomique Fonctionnelle, Département d’Endocrinologie; Centre National de la Recherche Scientifique Unité Mixte de Recherche 5203; Institut National de la Santé et de la Recherche Médicale Unité 661; and Université Montpellier I, Université Montpellier II, F-34094 Montpellier, France

Abstract

We have previously shown that hyperosmotic stimulation of adult Wistar rats induces local angiogenesis within hypothalamic magnocellular nuclei, in relation to the secretion of vascular endothelial growth factor (VEGF) by the magnocellular neurons. The present study aimed at understanding how osmotic stimulus relates to increased VEGF secretion. We first demonstrate a correlation between increased VEGF secretion and local hypoxia. Osmotic stimulation is known to stimulate the metabolic activity of hypothalamic magnocellular neurons producing arginine vasopressin (AVP) and to increase the secretion of AVP, both by axon terminals into the circulation and by dendrites into the extracellular space. In AVP-deficient Brattleboro rats, the dramatic activation of magnocellular hypothalamic neurons failed to induce hypoxia, VEGF expression, or angiogenesis, suggesting a major role of hypothalamic AVP. A possible involvement of dendritic AVP release is supported by the findings that 1) hypoxia and angiogenesis were not observed in non osmotically stimulated Wistar rats in which circulating AVP was increased by the prolonged infusion of exogenous AVP, 2) contractile arterioles afferent to the magnocellular nuclei were strongly constricted by the perivascular application of AVP via V1a receptors (V1a-R) stimulation, and 3) after the intracerebral or ip administrations of selective V1a-R antagonists to osmotically stimulated rats, hypothalamic hypoxia and angiogenesis were or were not inhibited, respectively. Together, these data strongly suggest that the angiogenesis induced by osmotic stimulation relates to tissue hypoxia resulting from the constriction of local arterioles, via the stimulation of perivascular V1a-R by AVP locally released from dendrites.

Publisher

The Endocrine Society

Subject

Endocrinology

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3