Heat Shock Treatment of Tumor Lysate-Pulsed Dendritic Cells Enhances Their Capacity to Elicit Antitumor T Cell Responses against Medullary Thyroid Carcinoma

Author:

Bachleitner-Hofmann Thomas1,Strohschneider Michaela1,Krieger Peter1,Sachet Monika1,Dubsky Peter1,Hayden Hubert1,Schoppmann Sebastian F.1,Pfragner Roswitha2,Gnant Michael1,Friedl Josef1,Stift Anton1

Affiliation:

1. Department of Surgery (T.B.-H., M.St., P.K., M.Sa., P.D., H.H., S.F.S., M.G., J.F., A.S.), Medical University of Vienna, A-1090 Vienna, Austria

2. Department of Pathophysiology (R.P.), Medical University of Graz, A-8010 Graz, Austria

Abstract

Abstract Background: In vitro and in vivo studies have shown that dendritic cells (DCs) can stimulate antitumor T cell responses against medullary thyroid carcinoma (MTC). However, despite promising results in selected cases, the clinical efficacy of DC immunotherapy in patients with MTC has been limited. Recently, it has been demonstrated in mice that heat shock enhances the capacity of bone-marrow-derived DCs to stimulate antigen-specific T cells. The aim of our investigations was to evaluate whether heat shock also increases the capacity of human monocyte-derived DCs to stimulate antitumor T cell responses against MTC tumor cells. Methods: DCs from six patients with metastatic MTC were pulsed with tumor lysate derived from allogeneic MTC tumor cells and were heat shocked for 12 h at 40 C or kept at 37 C. Thereafter, the DCs were matured and cocultured with T cells. Finally, the cytotoxic activity of T cells against MTC tumor cells was measured in vitro. Results: In all patient samples, cytotoxic T cell responses against MTC tumor cells could be induced. Notably, heat-shocked DCs were more potent stimulators of cytotoxic T cell responses than control DCs, with T cells stimulated with heat-shocked DCs displaying a significantly increased cytotoxic activity against MTC tumor cells as compared with T cells stimulated with control DCs. In none of the experiments was a cytotoxic T cell response against unrelated pancreatic tumor cells (PANC-1) observed, using both control and heat-shocked DCs. Conclusions: Our study shows that heat-shocking DCs may be a valuable strategy to increase the immunostimulatory capacity of DCs used for immunotherapy of MTC.

Publisher

The Endocrine Society

Subject

Biochemistry, medical,Clinical Biochemistry,Endocrinology,Biochemistry,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3