A Mutation in the KCNE3 Potassium Channel Gene Is Associated with Susceptibility to Thyrotoxic Hypokalemic Periodic Paralysis

Author:

Dias Da Silva Magnus R.1,Cerutti Janete M.1,Arnaldi Liliane A. T.1,Maciel Rui M. B.1

Affiliation:

1. Laboratory of Molecular Endocrinology, Division of Endocrinology, Department of Medicine, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil

Abstract

Abstract Hypokalemic Periodic Paralyses comprise diverse diseases characterized by acute and reversible attacks of severe muscle weakness, associated with low serum potassium. The most common causes are Familial Hypokalemic Periodic Paralysis (FHypoKPP), an autosomal dominant disease, and Thyrotoxic Hypokalemic Periodic Paralysis (THypoKPP), secondary to thyrotoxicosis. Symptoms of paralysis are similar in both diseases, distinguished by thyrotoxicosis present in THypoKPP. FHypoKPP is caused by mutations in ionic channel genes calcium (CACN1AS), sodium (SCN4A) and potassium (KCNE3). Since both diseases are similar, we tested the hypothesis that THypoKPP could carry the same mutations described in FHypoKPP, being the paralysis a genetically conditioned complication of thyrotoxicosis. In 15 patients with THypoKPP, using target-exon PCR, CSGE screening, and direct sequencing, we excluded known mutations in CACN1AS and SCN4A genes. On the other hand, we were able to identify the R83H mutation in the KCNE3 gene in one sporadic case of THypoKPP, a man who had been asymptomatic until developing thyrotoxicosis caused by Graves’ disease; we confirmed the disease-causing mutation in 2 of 3 descendants. R83H was recently found in two FHypoKPP unrelated families, in which the mutant decreased outward potassium flux, resulting in a more positive resting membrane potential. We, therefore, identified the first genetic defect in THypoKPP, a mutation in the KCNE3 gene.

Publisher

The Endocrine Society

Subject

Biochemistry (medical),Clinical Biochemistry,Endocrinology,Biochemistry,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3