Leptin Stimulates the Activity of the System A Amino Acid Transporter in Human Placental Villous Fragments

Author:

Jansson N.1,Greenwood S. L.2,Johansson B. R.3,Powell T. L.1,Jansson T.1

Affiliation:

1. Perinatal Center, Departments of Physiology and Pharmacology (N.J., T.L.P., T.J.), 405 30 Göteborg, Sweden;

2. Academic Unit of Child Health (S.L.G.), University of Manchester, Manchester M13 0JH, United Kingdom

3. Anatomy and Cell Biology (B.R.J.), Göteborg University, 405 30 Göteborg, Sweden;

Abstract

The activity and expression of placental nutrient transporters are primary determinants for the supply of nutrients to the fetus, and these nutrients in turn regulate fetal growth. We developed an experimental system to assess amino acid uptake in single primary villous fragments to study hormonal regulation of the amino acid transporter system A in term human placenta. Validation of the method, using electron microscopy and studies of hormone production, indicated that fragments maintained ultrastructural and functional integrity for at least 3 h. The activity of system A was measured as the Na+-dependent uptake of methylaminoisobutyric acid (MeAIB), and the effect of 1 h incubation in various hormones was investigated. Uptake of MeAIB into villous fragments in the presence of Na+ was linear up to at least 30 min. Insulin (300 ng/ml, n = 14) increased system A activity by 56% (P < 0.05). This effect was also present at insulin concentrations in the physiological range (+47% at 0.6 ng/ml, n = 10, P < 0.05). Leptin (500 ng/ml, n = 14) increased Na+-dependent MeAIB uptake by 37% (P < 0.05). System A activity increased in a concentration-dependent fashion in response to leptin (n = 10). However, neither epidermal GF (600 ng/ml), cortisol (340 ng/ml), nor GH (500 ng/ml) altered system A activity significantly (n = 14). We conclude that primary single isolated villous fragments can be used in studies of hormonal regulation of nutrient uptake into the syncytiotrophoblast. These data suggest that leptin regulates system A, a key amino acid transporter.

Publisher

The Endocrine Society

Subject

Biochemistry (medical),Clinical Biochemistry,Endocrinology,Biochemistry,Endocrinology, Diabetes and Metabolism

Cited by 210 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Correlation of adiponectin and leptin with BMI, blood pressure in patients with preeclampsia;Indian Journal of Obstetrics and Gynecology Research;2024-08-15

2. Regulation of placental amino acid transport in health and disease;Acta Physiologica;2024-05-06

3. Placental Nutrient Transport;Reference Module in Biomedical Sciences;2024

4. Adipokines in pregnancy;Advances in Clinical Chemistry;2024

5. Leptin-Mediated Induction of IL-6 Expression in Hofbauer Cells Contributes to Preeclampsia Pathogenesis;International Journal of Molecular Sciences;2023-12-21

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3