Calcium-Calmodulin Kinase II Is the Common Factor in Calcium-Dependent Cardiac Expression and Secretion of A- and B-Type Natriuretic Peptides

Author:

Ronkainen Jarkko J.1,Vuolteenaho Olli1,Tavi Pasi1

Affiliation:

1. Department of Physiology and Biocenter Oulu, University of Oulu, 90014 Oulu, Finland

Abstract

Peptides derived from the precursor of A- and B-type natriuretic peptides (ANP and BNP) are powerful clinical markers of cardiac hypertrophy and dysfunction. It is known that many stimuli affecting the intracellular calcium concentration also induce ANP and BNP secretion. It was our intention to study the mechanisms by which calcium regulates the secretion of ANP and BNP. The effects of pacing and calcium-calmodulin kinase II activity on natriuretic peptide secretion were studied in isolated perfused rat atria and cultured rat neonatal cardiomyocytes. In isolated rat atrium pacing induced an increase in diastolic, systolic, and averaged intracellular free calcium concentration and a frequency-dependent increase in the secretion of both ANP and BNP. The molar ratio of the secreted natriuretic peptides (ANP to BNP) remained nearly constant (∼1000) at all the pacing frequencies tested (1, 3, 6, and 8 Hz). Calmodulin kinase II inhibitor KN-93 (3 μm) did not affect intracellular free calcium concentration but showed a frequency-dependent inhibitory effect on ANP and BNP secretion without a change in ANP to BNP ratio. In the neonatal cardiomyocytes, KN-93 (3 μm) suppressed the secretion and gene expression of both ANP and BNP. Overexpression of constitutively active (T286D) or nuclear (δB) calcium-calmodulin kinase II induced an increase in ANP and BNP gene expression. The results indicate that the calcium-dependent secretion and gene expression of A- and B-type natriuretic peptides are similarly regulated by calmodulin kinase II-dependent mechanisms. This is a plausible mechanism contributing to exercise-induced natriuretic peptide secretion and the augmented secretion in heart dysfunction due to impaired calcium handling.

Publisher

The Endocrine Society

Subject

Endocrinology

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3