B-Type Natriuretic Peptide Inhibited Angiotensin II-Stimulated Cholesterol Biosynthesis, Cholesterol Transfer, and Steroidogenesis in Primary Human Adrenocortical Cells

Author:

Liang Faquan1,Kapoun Ann M.1,Lam Andrew1,Damm Debby L.1,Quan Diana1,O’Connell Maile1,Protter Andrew A.1

Affiliation:

1. Scios, Inc., Fremont, California 94555

Abstract

In this study, we demonstrate that B-type natriuretic peptide (BNP) opposed angiotensin II (Ang II)-stimulated de novo cholesterol biosynthesis, cellular cholesterol uptake, cholesterol transfer to the inner mitochondrial membrane, and steroidogenesis, which are required for biosynthesis of steroid hormones such as aldosterone and cortisol in primary human adrenocortical cells. BNP dose-dependently stimulated intracellular cGMP production with an EC50 of 11 nm, implying that human adrenocortical cells express the guanylyl cyclase A receptor. cDNA microarray and real-time RT-PCR analyses revealed that BNP inhibited Ang II-stimulated genes related to cholesterol biosynthesis (acetoacetyl coenzyme A thiolase, HMG coenzyme A synthase 1, HMG coenzyme A reductase, isopentenyl-diphosphate Δ-isomerase, lanosterol synthase, sterol-4C-methyl oxidase, and emopamil binding protein/sterol isomerase), cholesterol uptake from circulating lipoproteins (scavenger receptor class B type I and low-density lipoprotein receptor), cholesterol transfer to the inner mitochondrial membrane (steroidogenic acute regulatory protein), and steroidogenesis (ferredoxin 1,3β-hydroxysteroid dehydrogenase, glutathione transferase A3, CYP19A1, CYP11B1, and CYP11B2). Consistent with the microarray and real-time PCR results, BNP also blocked Ang II-induced binding of 125I-labeled low-density lipoprotein and 125I-labeled high-density lipoprotein to human adrenocortical cells. Furthermore, BNP markedly inhibited Ang II-stimulated release of estradiol, aldosterone, and cortisol from cultured primary human adrenocortical cells. These findings demonstrate that BNP opposes Ang II-induced steroidogenesis via multiple steps from cholesterol supply and transfer to the final formation of steroid hormones. This study provides new insights into the cellular mechanisms by which BNP modulates Ang II-induced steroidogenesis in the adrenal gland.

Publisher

The Endocrine Society

Subject

Endocrinology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3