Relaxin Antagonizes Hypertrophy and Apoptosis in Neonatal Rat Cardiomyocytes

Author:

Moore Xiao-lei,Tan Su-ling,Lo Chen-yi,Fang Lu,Su Yi-Dan,Gao Xiao-Ming,Woodcock Elizabeth A.,Summers Roger J.,Tregear Geoffrey W.,Bathgate Ross A. D.,Du Xiao-Jun

Abstract

The pregnancy hormone relaxin has recently been shown to be cardio-protective. Despite its well-established antifibrotic actions in the heart, the effects of relaxin on cardiomyocytes (CM) remain to be determined. We investigated effects of isoform 2 of the human relaxin (H2-relaxin) on CM hypertrophy and apoptosis. In cultured neonatal rat CM, phenylephrine (50 μm) and cardiac fibroblast-conditioned medium were used respectively to induce CM hypertrophy. The degree of hypertrophy was indicated by increased cell size, protein synthesis and gene expression of atrial natriuretic peptide. Although H2-relaxin (16.7 nm) alone failed to suppress hypertrophy induced by phenylephrine, it repressed the cardiac fibroblast-conditioned medium-induced increase in protein synthesis by 24% (P < 0.05) and reversed the increase in cell size (P < 0.001) and atrial natriuretic peptide expression (P<0.01). We further studied the effect of H2-relaxin on CM apoptosis induced by H2O2 (200 μm). Studies of DNA laddering and nuclear staining demonstrated that H2-relaxin treatment reduced H2O2-induced DNA fragmentation. Real-time PCR and Western blot analysis revealed a significant increase in the Bcl2/Bax ratio in H2-relaxin-treated CM. Further analysis showed that activation of Akt (1.8-fold, P< 0.001) and ERK (2.0-fold, P<0.01) were involved in the antiapoptotic action of H2-relaxin in CM, and that Gi/o coupling of relaxin receptors was associated with the H2-relaxin-induced Akt activation in CM. In conclusion, these results extend our current knowledge of the cardiac actions of relaxin by demonstrating that H2-relaxin indirectly inhibits CM hypertrophy and directly protects CM from apoptosis.

Publisher

The Endocrine Society

Subject

Endocrinology

Cited by 79 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3