Thyroid Hormone Homeostasis and Action in the Type 2 Deiodinase-Deficient Rodent Brain during Development

Author:

Galton Valerie Anne1,Wood Emily T.1,St. Germain Emily A.1,Withrow Cheryl-Ann1,Aldrich George1,St. Germain Genevieve M.1,Clark Ann S.2,St. Germain Donald L.13

Affiliation:

1. Departments of Physiology (V.A.G., E.T.W., E.A.S.G., C.-A.W., G.A., G.M.S.G., D.L.S.G.), Dartmouth Medical School, Lebanon, New Hampshire 03756

2. Department of Psychology and Brain Sciences (A.S.C.),Dartmouth College, Hanover, New Hampshire 03755,Dartmouth College, Hanover, New Hampshire 03755

3. Medicine (D.L.S.G.), Dartmouth Medical School, Lebanon, New Hampshire 03756

Abstract

Considerable indirect evidence suggests that the type 2 deiodinase (D2) generates T3 from T4 for local use in specific tissues such as pituitary, brown fat, and brain, and studies with a D2-deficent mouse, the D2 knockout (D2KO) mouse, have shown this to be the case in pituitary and brown fat. The present study employs the D2KO mouse to determine the role of D2 in the developing brain. As expected, the T3 content in the neonatal D2KO brain was markedly reduced to a level comparable with that seen in the hypothyroid neonatal wild-type mouse. However, the mRNA levels of several T3-responsive genes were either unaffected or much less affected in the brain of the D2KO mouse than in that of the hypothyroid mouse, and compared with the hypothyroid mouse, the D2KO mouse exhibited a very mild neurological phenotype. The current view of thyroid hormone homeostasis in the brain dictates that the T3 present in neurons is generated mostly, if not exclusively, from T4 by the D2 in glial cells. This view is inadequate to explain the findings presented herein, and it is suggested that important compensatory mechanisms must be in play in the brain to minimize functional abnormalities in the absence of the D2.

Publisher

The Endocrine Society

Subject

Endocrinology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3