Author:
Lehnes Kevin,Winder Abigail D.,Alfonso Camille,Kasid Natasha,Simoneaux Michael,Summe Heather,Morgan Elisha,Iann Mary C.,Duncan Jessica,Eagan Matthew,Tavaluc Raluca,Evans Charles H.,,Russell Robert,Wang Antai,Hu Fengming,Stoica Adriana
Abstract
To determine whether the epidermal growth factor receptor 2 (ErbB2) and Akt1 can alter the in vivo growth of MCF-7 cells, parental cells or cells stably transfected with constitutively active Akt1 (myr-Akt1) or dominant-negative Akt1 mutants (K179M-Akt1 and R25C-Akt1) were implanted into athymic nude mice. Tumor growth was monitored in the presence or absence of the antiestrogen tamoxifen and the selective ErbB2 inhibitor, AG825. MCF-7 [parental or empty vector transfected, cytomegalovirus (CMV)] and myr-Akt1 cells formed tumors upon estradiol supplementation after 20–30 d (59-, 29-, and 17-fold increase in tumor volume, respectively). Tamoxifen and AG825 blocked the estradiol effect by 93 and 96% in MCF-7 xenografts, 88 and 81% in CMV xenografts, and 91% in myr-Akt1 xenografts. Furthermore, AG825 suppressed the growth of established tumors in CMV and myr-Akt1 inoculated animals by 68 and 75%, respectively, as compared with continued estrogen supplementation, suggesting a role for ErbB2. When K179M-Akt1 or R25C-Akt1 cells were injected into ovariectomized animals, tumor growth was reduced upon estradiol treatment by 95% and 98%, respectively, supporting a role for Akt1. In contrast to ovariectomized animals, in intact animals, myr-Akt1 cells could establish tumors without estradiol priming after 40–50 d (20-fold increase in tumor volume). Loss of Akt1 phosphorylation was associated with tumor growth inhibition. Immunohistochemical assays showed that in tumors from parental and CMV xenografts, estradiol decreased estrogen receptor-α expression and induced progesterone receptor expression and Akt phosphorylation, effects that were inhibited by tamoxifen, AG825, and R25C-Akt1 by 89, 82, and 77% for progesterone receptor expression and 48, 66, and 73% for pAkt expression, respectively. Cumulatively, our results suggest that Akt1 and ErbB2 are involved in in vivo tumorigenesis and modulation of estrogen receptor-α expression and activity.
Reference55 articles.
1. Estrogen receptors and their downstream targets in cancer.;Ikeda;Arch Histol Cytol,2004
2. Estrogen receptor signalling: bases for drug actions.;Marino;Curr Drug Targets Immune Endocr Metabol Disord,2005
3. Cellular and molecular pharmacology of antiestrogens action and resistance.;Clarke;Pharmacol Rev,2001
4. Pak up your breast tumor—and grow!;Jordan;J Natl Cancer Inst,2006
5. A potent specific pure antiestrogen with clinical potential.;Wakeling;Cancer Res,1991