Expression of KiSS-1 in Rat Ovary: Putative Local Regulator of Ovulation?

Author:

Castellano J. M.,Gaytan M.,Roa J.,Vigo E.,Navarro V. M.,Bellido C.,Dieguez C.,Aguilar E.,Sánchez-Criado J. E.,Pellicer A.,Pinilla L.,Gaytan F.,Tena-Sempere M.

Abstract

Kisspeptins, the products of KiSS-1 gene, and their receptor, GPR54, have recently emerged as essential gatekeepers of reproduction, mainly through regulation of GnRH secretion at the hypothalamus. However, the profound hypogonadotropism linked to GPR54 inactivation is likely to mask additional functions of this system at other levels of the gonadal axis, in which expression of KiSS-1 and GPR54 has been preliminarily reported. We describe herein the expression of KiSS-1 gene and kisspeptin immunoreactivity (IR) in rat ovary and evaluate its developmental and hormonal regulation. KiSS-1 and GPR54 mRNAs were persistently detected in adult ovary along estrous cycle. Yet, contrary to GPR54, ovarian KiSS-1 levels fluctuated in a cyclic-dependent manner, with a robust increase in the afternoon of proestrus, i.e. preceding ovulation. In addition, kisspeptin-IR was observed in rat ovary, with strong signals in theca layers of growing follicles, corpora lutea, and interstitial gland, compartments in which modest GPR54-IR was also detected. Interestingly, the rise in ovarian KiSS-1 mRNA at proestrus was prevented by blockade of preovulatory gonadotropin surge and restored by replacement with human chorionic gonadotropin as superagonist of LH. In addition, immature ovaries showed low to negligible levels of KiSS-1 mRNA, which were significantly enhanced by gonadotropin priming. In summary, we present novel evidence for the developmental and hormonally regulated expression of the KiSS-1 gene, and the presence of kisspeptin-IR, in rat ovary. The ability of the LH surge to timely induce ovarian expression of KiSS-1 at the preovulatory period strongly suggests a previously unsuspected role of locally produced kisspeptin in the control of ovulation.

Publisher

The Endocrine Society

Subject

Endocrinology

Cited by 224 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3