Author:
Jia D.,O’Brien C. A.,Stewart S. A.,Manolagas S. C.,Weinstein R. S.
Abstract
Glucocorticoid administration to mice results in a rapid loss of bone mineral density due to an imbalance in osteoblast and osteoclast numbers. Whereas excess glucocorticoids reduce both osteoblast and osteoclast precursors, cancellous osteoclast number surprisingly does not decrease as does osteoblast number, presumably due to the ability of glucocorticoids to promote osteoclast life span. Whether glucocorticoids act directly on osteoclasts in vivo to promote their life span and whether this contributes to the rapid loss of bone with glucocorticoid excess remains unknown. To determine the direct effects of glucocorticoids on osteoclasts in vivo, we expressed 11β-hydroxysteroid dehydrogenase type 2, an enzyme that inactivates glucocorticoids, specifically in the osteoclasts of transgenic mice using the tartrate-resistant acid phosphatase promoter. Bone mass, geometry, and histomorphometry were similar in untreated wild-type and transgenic animals. Glucocorticoid administration for 7 d caused equivalent increases in cancellous osteoblast apoptosis, and equivalent decreases in osteoblasts, osteoid, and bone formation, in wild-type and transgenic mice. In contrast, glucocorticoids stimulated expression of the mRNA for calcitonin receptor, an osteoclast product, in wild-type but not transgenic mice. Consistent with the previous finding that glucocorticoids decrease osteoclast precursors and prolong osteoclast life span, glucocorticoids decreased cancellous osteoclast number in the transgenic mice but not wild-type mice. In accord with this decrease in osteoclast number, the loss of bone density observed in wild-type mice was strikingly prevented in transgenic mice. These results demonstrate for the first time that the early, rapid loss of bone caused by glucocorticoid excess results from direct actions on osteoclasts.
Cited by
306 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献