Importance of Melanocortin Signaling in Refeeding-Induced Neuronal Activation and Satiety

Author:

Singru Praful S.,Sánchez Edith,Fekete Csaba,Lechan Ronald M.

Abstract

To identify regions in the hypothalamus involved in refeeding and their regulation by α-MSH, adult rats were subjected to a 3-d fast, and 2 h after refeeding, the distribution of c-Fos-immunoreactive neurons was elucidated. Compared with fed and fasted animals, a significant increase (P < 0.001) in the number of c-Fos-immunoreactive cells was identified in refed animals in the supraoptic nucleus, magnocellular and ventral parvocellular subdivisions of the hypothalamic paraventricular nucleus (PVNv), and the dorsal and ventral subdivisions of the dorsomedial nucleus (DMNd and DMNv, respectively). Refeeding shifted the location of c-Fos-labeled neurons from the medial to lateral arcuate where c-Fos was induced in 88.7 ± 2.2% of α-MSH-containing neurons. α-MSH-containing axons densely innervated the PVNv, DMNd, and DMNv and organized in close apposition to the majority of refeeding-activated c-Fos-positive neurons. To test whether the melanocortin system is involved in induction of c-Fos in these regions, the melanocortin 3/4 receptor antagonist, agouti-related protein (AGRP 83–132), was administered to fasting animals just before refeeding. Compared with artificial cerebrospinal fluid, a single intracerebroventricular bolus of agouti-related protein (5 μg/5 μl) not only significantly increased the total amount of food consumed within 2 h but also nearly abolished refeeding-induced c-Fos expression in the PVNv and DMNd and partially reduced c-Fos immunoreactivity in the DMNv. We conclude that refeeding activates a subset of neurons in the PVN and DMN as a result of increased melanocortin signaling and propose that one or more of these neuronal populations mediate the potent anorexic actions of α-MSH.

Publisher

The Endocrine Society

Subject

Endocrinology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3